
SCHOOL OF ELECTRICAL ENGINEERING
AND TELECOMMUNICATIONS

Qualitative Assessment Metrics For
Transfer Learning

by

Joel Smith
Student ID: z5076397

ELEC4951 Research Thesis C - Report

Thesis submitted as a requirement for the degree

Bachelor of Engineering (Electrical Engineering)

Submitted: November 28, 2019
Supervisor: Dr. Beena Ahmed Assessor: Dr. Elias Aboutanios

Topic Title: Qualitative Assessment Metrics For Transfer Learning

Student Name: Joel Smith Student ID: z5076397

A. Problem statement
The nature of deep learning (and by extension, transfer learning) is that of a ‘black-
box’, where it is unclear how to assess the performance of these applications beyond a
few standard, high-level metrics; the most prevalent being accuracy. As a result, this
inherently limits the ability to improve the system without a more detailed qualitative
perspective. There is a need to develop qualitative assessment metrics to understand
the performance of transfer learning applications. This would provide further insight
into potential errors within the application and areas of improvement, beyond what is
perceivable by high-level metrics such as accuracy.

B. Objective
To identify qualitative metrics that can be used to successfully evaluate the
performance of transfer learning applications at a finer-grade level than accuracy.
These metrics should be able to develop insight into improving the application and
qualitatively explain higher-level metrics, such as accuracy.

C. My solution
Create a TL model from scratch to identify potential metrics to investigate.
Take the identified metrics from the previous phase and explore their capacity for
providing qualitative assessment using a more sophisticated TL system built on a
high-level, robust DL Python library called Keras.

D. Contributions (at most one per line, most important first)
Metric 1: Neural Network Utilization
Metric 2: Activation Spectrum
Metric 3: Activation Range
Identified the existence of ‘deactivated neurons’ in DL and TL applications
Identified NNU trends on small-scale experiment
Developed 8 various DL models (intentionally ranging in complexity and
performance)

E. Suggestions for future work
Create relationships between defined qualitative metrics and other high-level metrics
from confusion matrix (accuracy was only confusion matrix metric explored)
Continue developing some of the unsuccessful tests, such as ‘maximally activating
features’
Investigate how the weights change before and after transfer and see if other
qualitative metrics can be gleaned.

Pointers
5 Problem Statement
6 Objective

Theory (up to 5 most relevant ideas)
8 Deep Learning
13 Transfer Learning
15 Model Adaptation (using pre-trained feature extractor)
16 Existing Assessment Metrics (Confusion Matrix)
18, 20 Optimization strategies(Regularization, data augmentation)

Method of solution (up to 5 most relevant points)
25 “Investigation Phase” – developing TL model from scratch
26 Hyper-parameter sweep test
27 Transfer learning technique – Model Adaptation
29-31 “Exploration Phase” – Developing 8 models using Keras
35-36 Neural Network Utilization Test, Activation Spectrum Test, Activation Range

Test.

Contributions (most important first)
46-48 Metric 1: Neural Network Utilization
48-50 Metric 2: Activation Spectrum
51-52 Metric 3: Activation Range
42 Identified the existence of ‘deactivated neurons’ in DL and TL

applications
42-43 Identified NNU trends on small-scale experiment
41 Identified maximum activation trends on small-scale experiment

My work
29-32 System block diagrams/architectural diagrams
35-36 Description of assessment criteria used/metrics to be created
25-28, 29-34 Description of procedure (e.g. for experiments) (Divided into 2 phases)

Results
37-42, 45-52 Succinct presentation of results (2 phases)
41-44, 46-52 Analysis (2 phases)
42-44, 46-54 Significance of results (There is a lot of interweaving of these three

‘Results’ sections, not just isolated into three separate sections.)

Conclusion
55-59 Statement of whether the outcomes met the objectives
59-60 Suggestions for future research

Literature: (up to 5 most important references)
15, 29-34 [31] Sarkar, D. 2018
20-21 [33] C. Shorten and T. M. Khoshgoftaar. 2019
22-23, 28, 41 [15] A. Kensert, P. J. Harrison, 2019
18, 19, 25-26 [19] A. Ng. 2019
22-23, 54 [30] W. Samek, A. Binder, G. Montavon, K. Müller. 2016

Abstract

Advancements in machine learning and artificial intelligence continue to make new strides

at an incredible pace, including the recent exploration of transfer learning; which at a basic

premise promotes high-level, robust, learned features being shared across other features

and tasks. This innovation allows applications with smaller datasets to produce significant

results. However, the nature of deep learning (and by extension, transfer learning) is that

of a ‘black-box’, where it is unclear how to assess the performance of these applications

beyond a few standardised, high-level metrics; the most prevalent being accuracy. As a

result, this inherently limits the ability to improve the system without a more detailed,

qualitative perspective. This thesis develops qualitative assessment metrics to understand

the performance of transfer learning applications. The three metrics developed stem from

analysis at the activation level within neural networks. These metrics provide further

insight into potential errors within the application and areas of improvement, beyond

what is perceivable by high-level metrics such as accuracy.

Acknowledgements

I wish to thank all the people that have made contributions to the contents of this thesis,

particularly, my supervisor Dr. Beena Ahmed, who has provided direction, guidance and

insight throughout the entire project.

I would also like to thank the people who have supported me this year:

Julian and Juliette Smith, Jason and Abi Smith, Jordan and Millie Smith, Jenna

and Dan Smith, Jemima Smith, Vanessa Long, Harry Kreicers, Oliver Mullins, Mathew

Wood and Adrian Mena.

1

Abbreviations

ANN Artificial Neural Network

AR Activation Range

AS Activation Spectrum

CM Confusion Matrix

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

FC Fully Connected Layers

LSTM Long Short Term Memory

ML Machine Learning

MLP Multilayer Perceptron

NLP Natural Language Processing

NNU Neural Network Utilization

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

TL Transfer Learning

2

Contents

Acknowledgements 1

Abbreviations 2

Contents 3

1 Introduction 5

1.1 Problem Definition . 5

1.2 Thesis Objectives . 6

1.3 Summary Of Results . 6

1.4 Thesis Outline . 7

2 Background 8

2.1 Background Theory . 8

2.1.1 Deep Learning . 8

2.1.2 Transfer Learning . 13

2.2 Assessing Performance Of DL And TL Applications 16

2.2.1 Existing Assessment Metrics . 16

2.2.2 Optimizing Performance Strategies 18

2.3 Knowledge Gap In Literature . 22

2.4 A Brief Discussion On Changes To Thesis 24

3 Identified Metrics 25

3

3.1 Investigation Phase . 26

3.1.1 Motivation . 26

3.1.2 Method . 26

3.2 Exploration Phase . 30

3.2.1 Motivation . 30

3.2.2 Method . 30

4 Evaluation 38

4.1 Investigation Phase Results . 38

4.1.1 Confusion Matrix . 38

4.1.2 Baseline Hyper-Parameter Sweep Test Results 39

4.1.3 Transfer Learning Hyper-Parameter Sweep Test Results 40

4.1.4 Maximum Activation Results . 42

4.1.5 ’Reverse Engineering’ Results . 43

4.1.6 Potential Metrics Gleaned From Tests 43

4.2 Exploration Phase Results . 46

4.2.1 Accuracy Results . 46

4.2.2 Neural Network Utilization (NNU) Results 47

4.2.3 Activation Spectrum (AS) Results 49

4.2.4 Activation Range (AR) Results 52

4.2.5 Unsuccessful Tests . 53

5 Conclusion 56

5.1 Summary Of Solution . 56

5.2 Implications Of Qualitative Metrics . 58

5.3 Future Work . 60

Bibliography 62

Appendix 66

4

Chapter 1

Introduction

Advancements in machine learning and artificial intelligence continue to make new strides

at an incredible pace, including the recent exploration of transfer learning (TL); which

at a basic premise promotes high-level, robust, learned features being shared across other

features and tasks. This innovation allows applications with smaller datasets to produce

significant results.

1.1 Problem Definition

The nature of deep learning (and by extension, transfer learning) is that of a ‘black-

box’, where it is unclear how to assess the performance of these applications beyond a

few standard, high-level metrics; the most prevalent being accuracy. As a result, this

inherently limits the ability to improve the system without a more detailed qualitative

perspective.

There is a need to develop qualitative assessment metrics to understand the

performance of transfer learning applications. This would provide further insight into

potential errors within the application and areas of improvement, beyond what is per-

ceivable by high-level metrics such as accuracy.

5

1.2 Thesis Objectives

The objective of this thesis is to identify qualitative metrics that can be used to success-

fully evaluate the performance of transfer learning applications at a finer-grade level than

accuracy. These metrics should be able to develop insight into improving the application

and qualitatively explain higher-level metrics, such as accuracy.

1.3 Summary Of Results

Three qualitative metrics were identified; Neural Network Utilization (NNU), Activation

Spectrum (AS), and Activation Range (AR). Each of these metrics emerged from analysis

at the activation level within a variety of different models.

NNU refers to the percentage of deactivated neurons within a network, alluding

to the degree of utilization within the network. Results imply reducing NNU increases

performance, which is the intuitive reaction to maximizing utilization of a network. Qual-

itatively, a model with high NNU can be improved by reassessing regularization methods

and improving data quantity, such as by utilizing data augmentation techniques.

AS is a visualisation of the activations across the entire network in a frequency

histogram. Results reinforce the implications of NNU, as well as discovering superior

models depict right-skewed distributions. A model producing a poor AS could be im-

proved by minimising NNU, followed by re-evaluating the activation function, weight

distribution and using regularization methods such as L2.

AR is a visualisation of the maximum activations of individual layers within

the network. Results imply consistent maximum activations between layers correlate to

improved results. Similarly to AS, reassessing weight distribution and using regularization

methods such as L2 could improve AR.

These metrics could be used as a foundational step in removing the ’black-box’

nature of deep neural networks, highlighting their significance to the current research.

6

1.4 Thesis Outline

The thesis is divided into four chapters (excluding this chapter):

• Chapter 2 gives a greater context to the subject matter and concepts, providing the

background theory to understand the problem. It contains the current literature,

predominantly surrounding transfer learning applications, and highlights the lack

of expression of qualitative results.

• Chapter 3 provides the methodology behind developing potential qualitative met-

rics. The solution was defined through two phases; an investigation phase and an

exploration phase. The first phase investigates potential metrics using a small-scale

TL system developed from scratch. The second phase takes the identified metrics

from the previous phase and explores their capacity for providing qualitative as-

sessment using a more sophisticated TL system built on a high-level, robust DL

Python library called Keras.

• Chapter 4 evaluates and discusses the results found in chapter 3. This chapter pro-

vides the implications of the metrics to the broader research, particularly highlight-

ing the qualitative nature of the metrics that help provide insight into improving

TL systems.

• Chapter 5 provides conclusions to the thesis; what has and has not been achieved.

It also highlights where future research could be conducted.

7

Chapter 2

Background

2.1 Background Theory

2.1.1 Deep Learning

Deep learning (DL) is defined as a class of machine learning (ML) techniques that exploit

many layers of non-linear information processing for supervised or unsupervised feature

extraction and transformation, and pattern analysis and classification. The main dif-

ferential of DL to traditional ML is the multiple levels (or layers) of representation and

abstraction, which translates to superior performance as data quantity increases (see fig-

ure 2.1). This advent has begun impacting a wide range of research domains since 2006

[6].

Figure 2.1: Advantage of DL over ML and NN [3].

8

Deep Neural Networks

A deep neural network (DNN) is the archetypal DL framework that is inspired by the

neural networks of the human brain to learn, recognise and classify patterns. They are

modelled as multilayer perceptrons (MLP) or "fully connected layers" (FCs), containing

an input layer, several hidden layers, and an output layer (see figure 2.2). They are

feed-forward systems, where the units in one layer are connected unidirectionally to the

following layers to perform non-linear transformations to the input data [26]. A DNN’s

performance is traditionally assessed on its accuracy of classification, generally on a test

dataset not used in training.

Figure 2.2: MLP model of a 4-layer DNN [20].

Modelling An L-layer DNN

In an L-layer DNN, each hidden unit, j, in layer, l, has an activation function (see

activation functions), such as the sigmoid or logistic function seen in equation 2.1, to

map its total input, xj , from the layer below, l+ 1, to the scalar state, yj . It is then

connected to all the hidden units of the layer above, l−1, to repeat the activation process.

yi = sigmoid(xj) = 1
1+ e−xj

, xj = bj +
∑

i

yiwi (2.1)

where bj is the bias of unit j, i is an index over units in the layer below, and wij is the

weight on a connection to unit j from unit i in the layer below. [12]

9

Classification occurs at the output layer, L, by calculating the class probability,

pj , using the ’softmax’ non-linearity:

pj = exj∑
k exk

= softmaxs(xj) (2.2)

where k is an index over all classes.

The DNN can then be discriminatively trained by calculating the discrepancy

between the target outputs and the actual outputs produced for each training case and

make slight adjustments within the system’s parameters as it backpropagates through

the layers; accomplished by using a cost function between the desired probabilities, dj ,

and the outputs of the softmax, pj , seen in equation 2.3.

C =−
∑

j

dj logpj (2.3)

Convolutional Neural Networks

The Convolutional Neural Network (CNN) is the predominant DL architecture utilized in

the current research, as it has found particular success in image recognition [10, 15, 23, 41],

and recently other domains, such as natural language processing (NLP) [9, 39] and speech

[1]. The premise of a CNN is the extraction of convolved features, or ’feature maps’,

which are created by passing a filter matrix or ’kernel’ over the input and producing a

dot product of the resultant multiplications (see figure 2.3).

Figure 2.3: CNN feature map convolution [37].

10

There are additional variables as to how this feature map is created by the

convolution of the filter matrix over the input matrix. Stride dictates how many pixels

the filter matrix slides over the input matrix after each multiplication. Padding allows

the input matrix to be padded with zeroes around the border to apply filters to the

bordering elements (which is called wide convolution). Depth corresponds to the number

of filters used for the convolution operation.

After each convolution operation, the feature maps are passed through an activa-

tion function, usually a Rectified Linear Unit (ReLU) function (see activation functions).

This parallels the activation of the neurons in the DNN through the sigmoid function in

equation 2.1.

Pooling (or subsampling in figure 2.4) is used after convolutional layers to

reduce the dimensionality of each feature map while retaining the important information.

Pooling summarises the feature map data, depending on the type of pooling desired, such

as max, average [41], sum etc. In the case of Max Pooling, which is the most common

[23, 31, 39], a spatial neighbourhood is defined (such as a 2 x 2 window) and the largest

element of that window is maintained in the reduced matrix. Different pooling techniques

have different effects but are generally used to reduce the number of parameters and

computations, therefore controlling overfitting.

Finally, the last convolution layer feeds into a traditional MLP or FC layer (or

layers), followed by a softmax function, similar to 2.1.1. These are added to the end of

CNNs to utilise their functionality for classification [10, 31]. Figure 2.4 summarises the

typical CNN structure.

Figure 2.4: Typical CNN model structure [31].

11

Activation Functions

The three main activation functions that are commonly used are tanh, sigmoid and ReLU

(see figure 2.5).

(a) Tanh Activation
y = tanh(x)

(b) Sigmoid Activation
y = 1

1+e−xj

(c) ReLU Activation
y = max(0,x)

Figure 2.5: Three main activation functions.

The ReLU is the most commonly used activation function for intermediate ac-

tivations as it is the least computationally expensive [7, 31, 33, 41]. Sigmoids tend to be

used at the output layer for classification. Tanh is seldom used.

Recurrent Neural Networks

There are other various architectures beside DNNs and CNNs, including Recurrent Neural

Networks (RNNs). RNNs use a sequence of inputs by looping internally rather than using

a feed-forward structure (see figure 2.6). For this reason, they are useful for complex data

that is formed in a sequence of inputs, such as speech or text. A well-known and high-

performing RNN is the Long Short Term Memory (LSTM) network, which is an RNN

which specialises in learning long-term dependencies [22].

Figure 2.6: An ’unrolled’ cycle within an RNN [22].

12

2.1.2 Transfer Learning

Definition Of Transfer Learning

Transfer learning (TL) is a machine learning technique which Andrew Ng in his NIPS16

tutorial remarked is ’a future key driver of machine learning success’ (see figure 2.7)[18].

Transfer learning involves all methods that utilize any auxiliary resources (data, model,

labels, etc.) to enhance model learning for the target task [38]. This can be understood

by a human’s ability to retain and reuse previously learned knowledge in related, but

different tasks, such as a classical pianist learning jazz piano [2, 31].

Figure 2.7: Drivers of ML industrial success according to Andrew Ng [28].

Transfer Learning Performance Over Traditional Machine Learning

Assessing the effectiveness of transfer learning performance over traditional machine

learning techniques is generally summarized in three high-level ways [32]:

1. higher start - indicating improved performance at the initial points.

2. higher slope - showing more rapid growth of performance.

3. higher asymptote - leading to an improved final performance.

As shown in figure 2.8, these above reasons are indicative of the advantage of

new tasks relying on previously learned tasks, instead of in isolation. Traditional ML

uses single-task learning, where knowledge is not retained or accumulated, whereas the

knowledge accumulated in TL allows the learning process to be faster, more accurate and

needing less training data to achieve success.

13

Figure 2.8: Traditional ML (left) vs. Transfer Learning (right) [31].

Relationship of Transfer Learning And Deep Learning

The paradigmatic shift brought on by deep learning changed everything, including trans-

fer learning. A major component of this impact, as mentioned in subsection 2.1.1, was

the strong modelling power via a multi-level hierarchy. This provided several advantages,

including the ability to learn high-level features, hierarchical parameter sharing, simple

feature learning without any labelled data, and learned models can be well adapted to

specific tasks with little supervised training.

For these reasons, deep learning provides a graceful framework for transfer learn-

ing, launching off the major research direction depicted in the NIPS95 workshop, "Learn-

ing to Learn" [4, 38], with high-level, robust, previously-learned features being shared

across other features and tasks.

Transfer learning methods

Many different methods emerged with transfer learning and can be differentiated into four

categories of applications, where data (or feature domain) and task are two conditional

factors:

Same Tasks Different Tasks

Same Domains Model adaptation, incremental learning,
model transfer Multitask learning

Different Domains Co-training, heterogeneous transfer learning,
generalized distillation Analogy learning

Table 2.1: Categories of transfer learning methods.

14

Table 2.1 refers to several transfer learning methods, but is not exhaustive; there

are a large number of methods devised by many authors [7, 10, 29, 40]. Appropriate

methods are expressions of transfer learning being applied under specific contexts, hence

these methods are driven by the previously mentioned conditional factors of data and task.

To illustrate these differences, two different transfer learning methods will be explored

below.

Model Adaptation This is considered the simplest and most common method, where

the source and target share the same domains, but the model is adapted to meet a

change of data distribution. One example is a DNN model completely trained with data

from a high resource, such as adult English speech, and has its last layer adapted to

the target condition or data with significantly fewer resources, such as dysarthric speech

[35]; domains share enough feature similarities to provide substantial results using model

adaptation. With the internal weights regularized by the high resource learning, this

information can be retained and reused powerfully for the low-resource domain.

Figure 2.9 shows this technique practically with the higher resource domain

network being used as a pre-trained feature extractor for the lower resource domain

network. The layers of the pre-trained feature extractor are either frozen or finely-tuned

when training with the target data. Finely-tuned layers tend to produce better performing

results [10, 15].

Figure 2.9: Model adaptation shown using a pre-trained model as a feature extractor,
adapted into another domain with a shallow classifier [31].

15

Multitask Learning Multitask Learning utilises the similar feature spaces of the source

and target domains, but where the task labels are significantly different. This is a popular

method for cross-lingual applications [8, 11, 13]. The target and source share learning

across a single level of the network; sharing feature extraction, sharing hidden layers, but

having the softmax layer task-dependent (see figure 2.10) [2].

Figure 2.10: Example model of multitask learning [24].

2.2 Assessing Performance Of DL And TL

Applications

2.2.1 Existing Assessment Metrics

Confusion Matrix Metrics

The majority of all standardised metrics used to assess both DL and TL applications

stem from the Confusion Matrix (see table 2.2).

Positive Predicted Negative Predicted

Positive Actual True Positive (TP) False Negative (FN)

Negative Actual False Positive (FP) True Negative (TN)

Table 2.2: Confusion Matrix

16

From these values, several standardised, high-level metrics can be calculated.

Accuracy is the most common metric used in all applications for assessing

performance. It is very high-level and provides little insight as to where the issues lie

within systems.

Accuracy = TP +TN

TP +TN +FP +FN
(2.4)

Recall is the ratio of correctly classified positive examples to the total positive

examples. High recall indicates the class is correctly recognized.

Recall = TP

TP +FN
(2.5)

Precision is the ratio of correctly classified positive examples to the total pos-

itive predictions.

Precision= TP

TP +FP
(2.6)

F1 Score conveys the balance between precision and recall.

F1 Score= 2.P recision.Recall
Precision+Recall

(2.7)

These metrics and more (Cohen’s Kappa, misclassification rate, null error rate

etc.) all use various combinations of the confusion matrix to create high-level insight into

a system’s classification ability. However, none of them provides a substantial qualitative

understanding of how the system reached these values.

The majority of the literature compares a TL application’s performance to a

traditional DL baseline model to show performance improvement, as accuracy typically

will improve. There is a need for additional metrics to provide finer-grade insight into the

performance of TL applications beyond what is available from these high-level metrics.

This is outlined in section 2.3.

17

2.2.2 Optimizing Performance Strategies

Regularization

Regularization provides additional efficiency and superior results, particularly as it re-

duces overfitting. Two common regularization techniques are L2 regularization and

dropout.

L2 relies on the assumption that a network is simpler with smaller weights. Thus, it

modifies the cost function by adding an additional term, penalizing the square values of

weights, driving weights to be smaller [16, 19]. This is shown in equation 2.8 below.

Jregularized =− 1
m

m∑
i=1
L(ŷ(i),y(i))+ λ

2m

L∑
l=1
||w[l]||2F (2.8)

Figure 2.11: L2 regularization where a second term (with λ) is added to the cost
function [19].

Dropout will randomly eliminate neurons at a specified probability, setting that neuron

to 0 for that iteration, allowing the network to operate on a subset of itself during

training (see figure 2.12). This promotes the network to not rely too heavily on any

individual neuron. This is a common method employed to improve performance by

reducing overfitting (see figure 2.13) in related works [21, 33, 41]).

Figure 2.12: Dropout regularization visualization [19].

Figure 2.13: Difference between no regularization (left), L2 regularization (centre), and
dropout (right) in reducing overfitting [19].

18

Optimization Algorithms

Optimization algorithms are used to minimize the cost or loss produced by the cost func-

tion (see equation 2.3 for an example cost function) that will lead to optimal solutions

faster and produce better-performing systems (see figure 2.14). The three common opti-

mization algorithms are gradient descent with momentum, root mean square propagation

(RMSprop), and the Adam optimization algorithm.

Gradient descent with momentum computes an exponentially weighted average of

the gradients which is then used to adjust weights. This, in turn, produces more direct

steps towards the local minima as vertical oscillations are reduced by using exponentially

weighted averages [7].

RMSprop utilizes a similar idea as momentum but uses division by the root mean

square of the derivatives, in hopes to maximise learning speed in the horizontal plane

and minimise vertical oscillations [31].

Adam combines both momentum and RMSprop to obtain the benefits of both. The

Adam algorithm is most commonly used [23, 31, 33].

(a) Learning curve using
gradient descent.

(b) Learning curve using
momentum.

(c) Learning curve using
Adam.

(d) Classification using
gradient descent.

(e) Classification using
momentum.

(f) Classification using
Adam.

Figure 2.14: Comparison of optimization algorithms [19].

19

Data Augmentation

Data augmentation is a technique used to create additional, varied data samples from an

existing dataset. This is a vital strategy for improving application performance for low

resource systems, as these systems have difficulty generalising validation and test sets.

The main techniques fall under the two categories of data warping and oversampling.

Data warping directly augments the input data to the model in the data

space while maintaining the target label [33]. Many applications incorporate warping

with geometric and colour transformations (see figure 2.15a), random erasing, adversarial

training, and neural style transfer [15, 23, 41].

Oversampling techniques create synthetic instances and add them to the train-

ing set. This includes mixing images, feature space augmentations, and generative ad-

versarial networks (see figure 2.15b) [23, 42].

(a) Data warping example used in section 3.2 utilizing geometric transformations.

(b) Oversampling example using generative adversarial networks (GANs) [42].

Figure 2.15: Data augmentation examples.

20

The two categories do not form a mutually exclusive dichotomy and are represented in

the taxonomy in figure 2.16.

Figure 2.16: Taxonomy of image data augmentation techniques [33].

Data Quality And Quantity

The reason TL and data augmentation are successful in improving the performance of

applications is the intuitive understanding of increasing data quantity generally increases

the performance of DL applications. However, the quality of data is an important con-

tributor to an application’s ability to generalize in its classification. This is perhaps the

greatest challenge in Big Data and DL [17]. Therefore, by building more substantial and

higher-quality datasets, applications can be further optimized.

21

2.3 Knowledge Gap In Literature

As mentioned in the introduction, the large majority of related works assess performance

by high-level metrics; almost always accuracy [10, 23, 41]. Since successful classification

is the main objective with many applications, accuracy is the most logical metric to

use when assessing if the application has achieved its purpose. However, this lacks the

qualitative insight into the reasons behind an application’s success (or failures), providing

little direction of how to improve performance (see figure 2.17).

Figure 2.17: Typical example of a TL application using a comparison of accuracies
between competing models to assess performance in classifying emotion[10].

Many papers comment on the ’black-box’ nature of neural networks and some

postulate ways of understanding the internals qualitatively by visualizing the internal

activations (see figures 2.18 and 2.19) [15, 30]. These methods tend to reach conclusions

that earlier layers show patterns of feature recognition whereas deeper layers tended to

present no clear indications of trends. However, these methods do not develop specific

metrics that can be employed to assess these relationships.

22

Figure 2.18: Example of seeking qualitative understanding of ’black-box’ neural network
by seeing maximized activations of internal layers [15].

Figure 2.19: Example of seeking qualitative understanding of ’black-box’ neural network
by using heatmaps [30].

23

2.4 A Brief Discussion On Changes To Thesis

It should be noted that the thesis’ problem statement, objectives, and therefore, method-

ologies have all shifted since trimester one. In trimester one, a similar goal was established

in identifying a qualitative understanding of TL, however, under the specific domain of

Automatic Speech Recognition (ASR) (see figure 2.20). The specific metric that was

focused on heavily was ’%WER’ or Word Error Rate, which is a specific form of accuracy

within ASR applications.

Figure 2.20: High-level view of ASR applications [36].

However, since trimester one, the thesis has developed in a more generalised

direction of identifying qualitative metrics that could be applied to any domain. In

addition to this, the various experiments of developing ASR models were beginning to be

too time-consuming and beyond the scope of the thesis, as it drew away from the focus

of qualitative assessment. Hence, the thesis has evolved away from ASR.

24

Chapter 3

Identified Metrics

The qualitative assessment metrics for transfer learning were developed in two distinct

phases; investigation and exploration.

1. The investigation phase involved developing a TL model from scratch to attempt

to identify potential metrics to investigate.

2. The exploration phase involved taking the potential metrics identified in the inves-

tigation phase and evaluating them within a much more robust, extensive model.

This was accomplished by developing a model using Keras, which is a high-level DL

Python library.

This chapter will illustrate the problems to be solved in each particular phase

and the methodology to solve these problems.

25

3.1 Investigation Phase

3.1.1 Motivation

Problem: A working model is required

Potential metrics can only be defined if a working model exists. Hence the first problem

to be addressed in this phase is to create a working DL application. After creating this,

a TL application will then need to be created. Finally, after a working TL application

exists, potential metrics could hypothetically be extracted via extensive experimentation.

Solution: create a working TL model from scratch

For this phase, it is significantly more advantageous to build a working TL model from

scratch, as this allows more manipulability of the model, which is crucial for this phase of

attempting to understand the ’black-box’ nature. Also, it reinforces the theoretical prin-

ciples behind DNNs by creating the methods from scratch (forward and backpropagation,

activation functions etc.), providing insight into which areas to investigate.

3.1.2 Method

Architecture

The methodology behind this phase was to create a simple model to experiment with.

Hence, more complex modelling, such as CNN, RNN and LSTM networks were all ignored

for the sake of simplicity. Instead, a 4-layer DNN was implemented, with ReLU activation

for all layers except for the output which uses a sigmoid activation (see figure 3.1).

Figure 3.1: Simple DNN architecture for the investigation phase [19].

26

Baseline Hyper-Parameters
Hyper-Parameter Value

Input Layer 64 by 64 pixel RGB image becomes 64∗64∗3 = 12288 neurons

Hidden Layers Three hidden layers with neurons 20, 7, 5 respectively

Output Layer 1 neuron

Learning Rate 0.0075

Cost Function Cross Entropy Criterion

Activation Function Rectified Linear (Sigmoid Output)

Table 3.1: Baseline hyper-parameters for both cat and dog classifiers. Baseline
parameter choices were modelled from Ng’s models [19].

Datasets

This model is a unary image classifier which will be used with a ’high-resource’ dataset

and a ’low-resource’ dataset to perform model adaptation. Ng’s cat vs. non-cat dataset

was used as the ’high-resource’ domain for the feature extractor, and a dog vs. non-

dog dataset that was self-curated from Kaggle’s Natural Images dataset was used as the

’low-resource’ domain (see figure 3.2)[27].

Cat vs. non-cat is a curation of cats as the primary class and other objects as

the anti-class. There are 209 images in the training set, and 50 images the in testing set.

Dog vs. non-dog is identical to the cat dataset, but with a dog as the primary class and

much fewer resources with 62 images in the training set, and 30 images in the testing set.

Small datasets were utilised to reduce computational costs as a tradeoff to clas-

sification accuracy, as high accuracy was not a priority of this phase of the thesis. Image

classification was chosen as the domain space as there are substantial resources for de-

velopment and many examples of successful TL in the literature [10, 15, 23, 31, 41].

Figure 3.2: Three samples from dog dataset.

27

Hyper-Parameter Sweep Tests

Four hyperparameter sweep tests were developed to assess models under structural vari-

ation. These sweeps were done in anticipation that trends would reveal themselves that

would ideally forge the potential qualitative metrics. The first sweep test is a learning

rate sweep of 50 rates in the range of [10−4,1) across a logarithmic distribution (as best

results tend to emerge exponentially towards zero). The other three sweep tests were

for the three hidden layers, sweeping across a variable number of neurons per layer, with

each sweep ranging from 1 to 50 neurons. In total, a model would be trained on 200

different sets of hyper-parameters and produced 200 sets of results per dataset.

Transfer Learning Technique

Model adaptation is used to take the cat classifier (domain with more resources) as the

feature extractor and transferred to a dog classifier (domain with fewer resources) as

shown in figure 3.3; see section chapter 2 for theory. The significant similarity between

dogs and cats provides a substantial problem space to explore transfer learning using this

method.

Figure 3.3: TL method for the investigation phase.

28

The cat classifier is trained to maximum accuracy using the baseline hyperpa-

rameters in table 3.1. The output layer is removed and fed into the first hidden layer of

the dog classifier, which uses the same baseline parameters in table 3.1, effectively achiev-

ing model adaptation. This model is then fed through the hyper-parameter sweep tests

explained previously, allowing qualitative comparisons between sweep results of different

models; particularly the baseline cat, baseline dog, and TL model.

The final variation to the model adaptation are various permutations of layers

are frozen and then run through the sweep tests to see how freezing particular layers of

the target domain (dog classifier) responded to the sweep tests.

Specific Investigative Metric Tests

In addition to the sweep tests for investigation, the following are specific tests developed

for drawing out potential metrics.

The first specific test is maximum activation, which determines the input image

that produces the maximum activation for any given neuron. This test was developed

to show a correlation between some neurons being considered ’cat-neurons’ and others

being ’non-cat neurons’, similar to work done by Kensert et al. [15].

Another test was to analyse particular neuron’s activation variations across

training in response to specific inputs. This effectively ’reverse engineers’ the DNN as

the internals are being analysed in response to a known output. This attempted to find

qualitative metrics from activation trends.

29

3.2 Exploration Phase

3.2.1 Motivation

Problem: Potential metrics need to be solidified

The results of the investigation phase developed several potential metrics to explore,

but the nature of the experiment produced results that were inconclusive due to the

small-scale experimentation.

Solution: Create a large-scale experiment

Hence, by leveraging high-level DL Python libraries, such as Keras, highly optimized and

powerful TL models can be developed and used with large datasets. Using these models,

the identified potential metrics can be substantially explored, thereby understanding their

implications for improving applications. The basis for this experiment is found in Sarkar’s

work on TL [31].

3.2.2 Method

Macro-structure Models Architecture Overview

Five models are created, each increasing with complexity from the previous to ideally

increase in performance (i.e. accuracy). Table 3.2 outlines the high-level description

of each model and figures 3.4 and 3.5 show the architectural schematics. The specific

structural differences of each are outlined in greater detail in ’Model Parameters’. The

five models are referred to as ’macro-structure models’ or ’macro-models’ as each model

has a significant structural difference to each predecessor (denoted as models 1, 2, 3, 4

and 5). The models were based off Sarkar’s work [31].

30

Model 1 Simple CNN model, with three convolutional layers and max-pooling for
automatic-extraction of features from images. This model has no regular-
ization. See figure 3.4 for the overall architecture.

Model 2 The same simple CNN model as model 1, but model utilises image augmen-
tation via geometric transformations to reduce overfitting. This model also
uses regularization via dropout. See chapter 2 for more details on image
augmentation and regularization. See figure 3.4 for the overall architecture.

Model 3 This model uses TL by leveraging a pre-trained CNN model as a feature
extractor into a shallow fully-connected classifier (see model adaptation).
The pre-trained model is outlined in the VGG-16 section below. All layers
within the pre-trained model are frozen. This model uses dropout. See
figure 3.5 for the overall architecture.

Model 4 The same TL model as model 3, but this model utilises image augmenta-
tion. See figure 3.5 for the overall architecture.

Model 5 The same TL model as model 4, but this model finely-tunes the weights of
the feature-extractor instead of freezing them. See figure 3.5 for the overall
architecture.

Table 3.2: Macro-structure models which increase in complexity.

Figure 3.4: Models 1 and 2 architecture schematic.

Figure 3.5: Models 3, 4 and 5 architecture schematic.

31

Micro-structure Models Architecture Overview

Upon creating these five models with macro-structural changes, the best of these models,

model 5, was taken and altered to create micro-structural changes (denoted as models

5a, 5b, 5c). Table 3.3 outlines the high-level descriptions of the micro-structural changes

and figures 3.6 and 3.7 show the architectural schematics.

Model 5a This model altered the number of neurons per layer in the shallow FC
classifier. See figure 3.6 for the overall architecture.

Model 5b This model added an additional FC layer to the shallow FC classifier.
See figure 3.7 for the overall architecture.

Model 5c This model altered the learning rate of training. See figure 3.5 for the
overall architecture.

Table 3.3: Micro-structure models.

Figure 3.6: Model 5a architecture schematic.

Figure 3.7: Model 5b architecture schematic.

32

VGG-16 - Pre-trained Feature Extractor

The VGG-16 model is a 16-layer (convolution and fully connected) network built on the

ImageNet database [5]. It is a state-of-the-art system that relies on conventional CNN

architecture with substantially increased depth. The system was trained for 1000 different

classes, using 1.3 million images for training which took approximately three weeks on

a high-performance system for training a single network [34]. It is generalised for a

wide range of tasks and datasets, which makes it an ideal candidate for a fully-realised

pre-trained feature extractor for dogs and cats. See figure 3.8 for architecture.

Figure 3.8: VGG-16 Model Architecture [31].

Model Parameters

The code for creating all models and detailed model summaries outlining specific layer

properties can be found in Appendix 3.

The following tables outline the parameter and structural choices behind each

model for the macro-structure tests. Hyper-parameters such as learning rate vary from

model to model. This was experimented by trial-and-error to achieve certain accuracy

thresholds, which is suitable when choosing hyper-parameters [19]. The same optimizer,

cost function and activation functions were used across all models, seen in table 3.4.

Hyper-parameter choice was modelled from Sarkar’s work [31].

33

Component Value

Optimizer RMSprop

Cost Function Cross Entropy Criterion

Activation Function Rectified Linear (Sigmoid Output)

Table 3.4: Common design decisions across all models

Component Value

Learning Rate 0.001

Image Augmentation No

Table 3.5: Model 1 Parameters - Simple CNN

Component Value

Learning Rate 0.0001

Regularization Dropout of 0.3 for FC layers

Image Augmentation Yes

Table 3.6: Model 2 Parameters - Simple CNN with image augmentation and
regularization

Component Value

Learning Rate 0.00001

Regularization Dropout of 0.3 for FC layers

Image Augmentation No

Transfer Learning Layers Frozen

Table 3.7: Model 3 Parameters - TL using VGG-16

Component Value

Learning Rate 0.00002

Regularization Dropout of 0.3 for FC layers

Image Augmentation Yes

Transfer Learning Layers Frozen

Table 3.8: Model 4 Parameters - TL using VGG-16 and image augmentation

34

Component Value

Learning Rate 0.00001

Regularization Dropout of 0.3 for FC layers

Image Augmentation Yes

Transfer Learning Layers Fine-tune

Table 3.9: Model 5 Parameters - TL using VGG-16, image augmentation and fine-tuning

Altered Component Value

Number of Neurons FC1 and FC2 changed to 600 and 400 neurons respectively

Table 3.10: Model 5a Parameters - Alter model 5 neurons per FC layer

Altered Component Value

Number of FC Layers Two (1 x 512) FC layers changed to three (1x512) layers

Table 3.11: Model 5b Parameters - Alter model 5 number of FC layers

Altered Component Value

Learning rate 0.00001 changed to 0.00005

Table 3.12: Model 5c Parameters - Alter model 5 learning rate.

Domain

Similar to the investigation phase domain, the famous Dogs vs. Cat dataset is used

[14]. The Kaggle dataset contains 25,000 images of dogs and cats (12,500 per class) for a

binary image classification application. A subset of these images was curated for training,

validating and testing the models to replicate TL conditions of minimal resources, shown

in table 3.13 below.

Training Validation Testing

3000 1000 1000

Table 3.13: Subset of Dogs vs. Cats dataset used for models, each set equally
represented by both classes.

The VGG-16 feature extractor was trained on the ImageNet dataset, which is

an extremely large visual database, containing over 14 million hand-annotated images,

with over 20,000 classes [5]. This makes the VGG-16 model an ideal candidate as the

’high-resource’ domain for model adaptation.

35

Neural Network Utilization Test

The inception of Neural Network Utilization (NNU) is found in 4.1.5.

Utilizing the powerful modelling capability of Keras, a model object with a

variable number of outputs can be instantiated, such that the predict method in the

Keras library can return the activations of a custom selection of individual layers of the

trained model as numpy arrays in response to the test dataset. To obtain the correct

layers for activation analysis for any given model, a sweep is done through the individual

layers to identify which should be set as output layers to capture activations. These layers

include all dense, convolution, max pool and ’model’ (the VGG-16 layer flattened) layers.

The resultant numpy array contains the layer activations which can then be

taken and analysed for deactivated neurons. A deactivated neuron is defined as a neu-

ron (or for convolutional layers, a feature map) with activations of 0 for the entire test

dataset. Therefore, using nested for loops of time complexity O(a), where a is the number

of activations, the total number of deactivated neurons, ϑ, can be found. This is compu-

tationally expensive as some activations exceed 9 x 106, therefore code optimization is a

potential area for improvement. The code can be found in Appendix 3.

Once the deactivated neurons were identified, finding NNU for the given model

can be found using equation 3.1:

NNU = ϑ

Total Activations
, where ϑ is deactivated neurons (3.1)

36

Activation Spectrum Test

A similar process as the NNU test can be done to identify the Activation Spectrum (AS).

Once the layer activations have been predicted, the numpy array results can be printed

sequentially, layer by layer, as frequency histograms to create a model’s AS using the

popular Python graphing library, matplotlib (see figure 3.9). The AS of a model is scaled

by the maximum activation of the model, hence code is reused for the Activation Range.

The code can be found in Appendix 3.

Figure 3.9: Example activation spectrum.

Activation Range Test

A similar process as the NNU test can be done to identify the Activation Range (AR). As

the activations are looped through, the maximum activation per layer is tracked instead

of deactivated neurons. The maximum activation of each layer is then plotted as a set of

bar graphs on a single plane using matplotlib (see figure 3.10). The code can be found in

Appendix 3.

Figure 3.10: Example activation range.

37

Chapter 4

Evaluation

This chapter evaluates the results from both the investigation phase and the exploration

phase.

4.1 Investigation Phase Results

4.1.1 Confusion Matrix

As mentioned in the DNN background section, the standard convention for assessing

DNN, and TL applications by extension, are the high-level metrics composed from ele-

ments of the confusion matrix (CM). Hence, it is important to develop these high-level,

standard metrics for the system to both follow best practices, and also use the qualitative

metrics to provide additional perspective to the values of the standard metrics.

38

Metrics Value

Accuracy 0.8

Misclassification Rate 0.2

True Positive Rate 0.848

False Positive Rate 0.294

True Negative Rate 0.706

Precision 0.848

Prevalence 0.66

Null Error Rate 0.34

Cohen’s Kappa 0.554

F1-Score 0.848

Table 4.1: Confusion matrix (CM) metrics for the baseline cat classifier model.

The definitions of these metrics can be found in chapter 2.2.1. The main high-level metric

that will be focused on is accuracy.

4.1.2 Baseline Hyper-Parameter Sweep Test Results

The hyper-parameter sweep tests were initially run on the baseline model for the cat

dataset. These sweep tests created 400 different sets of results for predictions for the

training and test sets (200 results each). As a starting point, the confusion matrix

metrics for each sweep test were graphed to visualise patterns or trends. An example of

this visualisation is shown in figure 4.1 for accuracy across the test dataset. A visualisation

set for each of the metrics in table 4.1 was created. Therefore, for the ten CM metrics,

four sweep tests, and both training and test datasets, 80 graphs were created to visualise

potential trends for qualitative metrics. This, in turn, creates 80 visualisations of trends

for any model the sweep test is run on.

39

Figure 4.1: The four sweep tests accuracy results on the baseline cat model using the
test dataset. The red line marks the line of best fit.

4.1.3 Transfer Learning Hyper-Parameter Sweep Test Results

After applying the transfer learning technique of model adaptation, another 80 graphs

are generated displaying the trends for the TL model. In addition to this, the baseline

dog model is also run in isolation through the sweep tests. There are now visualisations

of the sweep tests for the baseline cat model, the baseline dog model, and the TL model.

40

Consolidating Results To Remain In Scope

All of these graphs are generated to qualitatively compare the baseline cat model, the

baseline dog model, and the TL model, to detect if there are trends. However, there is

simply just too much data being generated to closely qualitatively compare every single

metric. For the sake of remaining in scope, the training set results were ignored, focus-

ing on the test set as this produces more valuable performance assessment results, and

accuracy was the CM metric that was closely analysed, as this was the only predominant

high-level metric that was consistently employed for performance assessment in the lit-

erature. This helps reduce the number of graphs for comparison from 80 graphs to 4 per

model (one for each sweep test).

(a) Baseline cat model

(b) Baseline dog model

(c) TL cat to dog model

Figure 4.2: Comparing baseline cat, baseline dog and TL cat to dog models for
accuracy sweep test on the first hidden layer. Full set of sweep visualisations can be

found in Appendix 2

41

When comparing the three models in figure 4.2, it is trivial when looking at the

lines of best fit (red lines) to see that the TL model (figure 4.2c) improves the overall

accuracy of the dog recognizer (figure 4.2b) by utilizing the knowledge gained from the

cat recognizer (4.2a). However, these graphs in isolation do not provide much insight into

particular identifiable metrics, as there are no obvious qualitative conclusions as to why

the TL model improves in performance

4.1.4 Maximum Activation Results

Whilst analysing the sweep test accuracy results for all models under the test set, other

specific investigative evaluations were happening in parallel. The first of which was

understanding the input that produced the maximum activation for each neuron, similar

to Kensert et al. [15]. The full output of this test can be found in Appendix 2.

The idea behind this test was to reveal specific neurons being ’cat-neurons’ or

’non-cat-neurons’, similar to Rodriquez work [25]. However, the potential take away from

this test revealed that there was a consistency of maximum activation values between

layers for the most successful model; the baseline cat-classifier. This is shown in figure

4.3.

Figure 4.3: The maximally activated neuron from each particular layer of baseline cat
model share somewhat consistent values.

The last two images of figure 4.3 were a by-product created to detect trends

in intermediate activations. However, no useful conclusions can be made from these

visualisations.

42

4.1.5 ’Reverse Engineering’ Results

The ’reverse-engineering’ test was used to reveal qualitative metrics from activation

trends. This test revealed a breakthrough for the thesis by revealing the existence of

’deactivated neurons’, summarised below in figure 4.4. Neurons 4, 7, 12, 14 and 19 all

’flat-line’ during the activation for all three inputs (the full set of graphs showing all

deactivated neurons is found in Appendix 2). This indicates that regardless of input,

these particular neurons are ’deactivated’. This hypothesis was confirmed for the entire

dataset, revealing they were deactivated for all input.

Figure 4.4: ’Reverse engineering’ tests for three varied inputs showcasing the difference
between a deactivated neuron and an activated neuron. Full set of graphs found in

Appendix 2.

4.1.6 Potential Metrics Gleaned From Tests

Neural Network Utilization

Combining the results from the hyper-parameter sweeps for accuracy and the break-

through of deactivated neurons in ’reverse engineering’, the first potential qualitative

metric was identified. Neural Network Utilization (NNU) is defined as the percent-

age of deactivated neurons within the network. A percentage is vital as the total number

of neurons varies from model to model. Below in figure 4.5, the NNU against accuracy

reveals potential results, as trends differ between baseline cat, dog and TL models.

43

(a) Baseline cat model

(b) Baseline dog model

(c) TL cat to dog model

Figure 4.5: Comparing baseline cat, baseline dog and TL cat to dog models for NNU vs.
accuracy using sweep test on the second hidden layer. Full set of sweep visualisations

can be found in Appendix 2.

However, while there is variance in NNU across the models which indicates

potential value as a new metric, the results of this test are inconclusive, most likely

due to the small-scale nature of this investigation phase. Hence, this potential metric’s

significance will be fully extrapolated in the exploration phase.

44

Activation Spectrum and Range

The results of maximum activation and the reveal of deactivated neurons imply that

additional qualitative metrics can be gleaned from analysing the activations across the

entirety of models.

Hence, two additional qualitative metrics are proposed. Firstly, Activation

Spectrum, which will analyse the spectrum of activations of neurons across the entire

network. This was explored, but results are irrelevant due to the inconclusive nature of

such a small number of neurons and small datasets. The full implication of this metric

is revealed in the exploration phase.

Secondly, Activation Range, which reveals the maximum activation range of

individual layers. Early tests in this phase from 4.1.4 revealed that successful models had

a consistency of maximum activation in each layer. This implication will be solidified in

the exploration phase.

45

4.2 Exploration Phase Results

4.2.1 Accuracy Results

Firstly, the accuracy across the test set of each model is required to use the potential

metrics to qualitatively assess performance.

Model Accuracy

1 - basic cnn 0.759

2 - img aug cnn 0.835

3 - transfer cnn 0.891

4 - tl img aug cnn 0.896

5 - tl img aug ft cnn 0.949

Table 4.2: Accuracy across test set for macro-models.

The pre-condition of each macro-model improving upon the accuracy of each

predecessor is fulfilled. Following this pre-condition, the qualitative metrics can now

attempt to provide insight into these values.

Model Accuracy

5 - tl img aug ft cnn 0.949

5a - tl img aug ft cnn alter neurons 0.944

5b - tl img aug ft cnn add layer 0.956

5c - tl img aug ft cnn alter lr 0.933

Table 4.3: Accuracy across test set for micro-models.

These values indicate that making micro-structural changes to models does not

affect performance as significantly as the macro-structural changes. However, the quali-

tative metrics will still be investigated to potentially provide insight into these high-level

values as well.

46

4.2.2 Neural Network Utilization (NNU) Results

Macro-models results

Figure 4.6: NNU results for macro-models 1 to 5.

Model Deactivated Neurons Total Activations NNU Accuracy

1 366 1697000 0.02157% 0.759

2 316 1697000 0.01862% 0.835

3 58 1025000 0.00566% 0.891

4 172 9217000 0.00187% 0.896

5 35 9217000 0.00038% 0.949

Table 4.4: Accuracy across test set for macro-models.

NNU is the most promising of the three qualitative assessment metrics, ev-

ident from the substantial trend in figure 4.6 and table 4.4. As shown in the graph,

NNU decreases as accuracy increases (accuracy depicted by colour-mapping), showing an

inversely proportional relationship between NNU and accuracy.

The major implications, inferring from the macro-structural differences, is that

applications can improve their performance by reassessing regularization techniques, such

as L2 or dropout, as well as employ data augmentation techniques such as image augmen-

tation. These techniques decrease NNU and thus increase performance (i.e. accuracy).

47

In addition, like all DL applications, data quality and quantity will be a bot-

tleneck for performance. This is indicative by the results of TL models outperforming

the other models as the TL models exploit the VGG-16 model which is trained on the

extremely substantial ImageNet dataset. Therefore, increasing data quality and quantity

affects the overall NNU which affects performance.

Micro-model results

(a) All micro-models (b) Micro-models excluding outlier

Figure 4.7: NNU results for micro-models.

Model Deactivated Neurons Total Activations NNU Accuracy

5 35 9217000 0.00038% 0.949

5a 27 9193000 0.00029% 0.944

5b 70 9729000 0.00072% 0.956

5c 4106 9217000 0.04455% 0.933

Table 4.5: Accuracy across test set for micro-models.

From figure 4.7a and table 4.5, micro-models provide less conclusive results as the macro-

models. Particularly as the altered learning rate is a substantial outlier. Various attempts

were run for the altered learning rate model and all presented the same outlier behaviour.

The other three models (5, 5a, 5b) shown in figure 4.7b confirm the results from the

macro-models, as their high-accuracy is reflected by low NNU, with each micro-model

having smaller NNU than the other macro-models.

48

However, when comparing these three models, NNU seems to be proportional

to accuracy not inversely proportional. The difference of NNU of these models is rel-

atively small when compared to the macro-models, however, it does imply that while

minimising NNU can be indicative of performance, it is not the only contributing fac-

tor. Hence, macro-structural differences of models substantially affect NNU which affects

performance, whereas micro-structural differences do not provide a strong correlation

between NNU and performance.

An additional implication of minimising NNU by deleting deactivated neurons

is explored in another test in section 2.

4.2.3 Activation Spectrum (AS) Results
Macro-models results

(a) Model 1 - Basic CNN
without regularization

(b) Model 2 - CNN with
image augmentation and

regularization

(c) Model 3 - TL with frozen
layers

(d) Model 4 - TL with image
augmentation and frozen layers

(e) Model 5 - TL with image
augmentation and fine-tuned

layers
Figure 4.8: Activation spectra for macro-models.

49

The second qualitative assessment metric, Activation Spectrum, provides a visuali-

sation of the entire network’s maximum activations per neuron. As postulated in the

investigation evaluation, depicting the spectrum of activation provides some qualitative

understanding of why different systems perform better than others. The spectra use

different colours to delineate activations in different layers.

Comparing models 1 and 2 to models 3, 4 and 5 in figure 4.8, it is evident

that introducing TL begins to shift activations to have a right-skewed distribution. This

implies right-skewed distributions of maximum activations of each neuron correspond to

better-performing systems. In addition, re-emphasising the results of NNU, minimising

NNU in producing better performing systems is visually evident in the spectrum.

This qualitative metric could similarly be used to illustrate improvements to a

system. To improve AS, minimising NNU, re-evaluating the activation function and initial

weight distribution could all be strategies to develop right-skewed distributions while

limiting deactivated neurons. Furthermore, using L2 regularization, which penalising the

square values of weights, will drive weights to be smaller and hence should promote more

right-skewed spectra (see 2.2.2 for more on L2).

50

Micro-models results

(a) Model 5 - TL with image
augmentation and fine-tuned layers

(b) Model 5a - TL with img aug and
ft layers with altered neurons

(c) Model 5b - TL with img aug and
ft layers with an added layer

(d) Model 5c - TL with img aug and
ft layers with altered learning rate

Figure 4.9: Activation spectra for micro-models

Since all of these micro-models share similar performances, it is unsurprising that all

contain right-skewed distributions with minimal NNU (excluding figure 4.9d which is an

outlier). This further emphasises the need to develop right-skewed spectra when seeking

to improve systems.

51

4.2.4 Activation Range (AR) Results

Macro-models results

Figure 4.10: Activation range results for macro-models.

The final qualitative assessment metric developed, Activation Range, measures the

maximum activation within each individual layer of a model. This metric provides ad-

ditional insight into the nature of activation values affecting performance, as the best

performing model - model 5, coloured purple in figure 4.10 - has the largest activation

of any of the macro-models. However, from other experiments, such as that depicted in

figure 4.11 with a retrained model 1, larger magnitudes of AR do not necessarily imply

better performance, as model 1 in this experiment still had an accuracy of 75.6%.

Figure 4.11: Another iteration of macro-model activation range results showing
inconsistencies in magnitude.

However, from figure 4.10 and 4.11, it is clear that consistency in each layer’s

activation within a model reflects better performance, as shown in models 3, 4 and 5.

52

Micro-models results

(a) All micro-models (b) Micro-models excluding outlier.

Figure 4.12: Activation range results for micro-models.

Consistency in each layer’s activations implying better performance is also highlighted by

the micro-models results in figure 4.12, as all of the high-performing models all maintain

consistency of each layer’s maximum activation. Hence, the implications of using AR

to improve a model’s performance are to seek consistencies of layer activations. This

can be accomplished by applying similar strategies to improving the NNU and AS, by

employing regularization within the network (particularly considering L2 to drive weights

to be smaller) as well as reassessing activation function choices.

4.2.5 Unsuccessful Tests

Several other tests for qualitative metrics were explored, however, were ultimately unsuc-

cessful for various reasons. These are dictated and explored below.

Maximally Activating Features

Using Keras, it is possible to analyse the intermediate activations within a network, as

mentioned previously in the NNU test section of chapter two. This is particularly useful

when exploring image classification, as specific features of images are more reactive for

specific neurons (or feature maps for convolutional layers). By plotting these activations

as images, the results reveal the more reactive features of each neuron, as specific sections

of these images are significantly brighter than others, as seen in figure 4.13.

53

Figure 4.13: Visualisation created in an attempt to expose specific features which
triggered significant activation within networks.

This visualisation was created to potentially reveal a metric of exposing and

isolating the specific features which trigger significant activations. However, nothing

conclusive amounted from this exploration.

54

Most prevalent pixel inversions

Stemming from the work of Samek et al. [30], an attempt was made to measure which

particular pixels of an input image triggered the highest activation, using the intermediate

activations of the previous unsuccessful test. Upon finding these pixels, a test would have

been created to randomize the colours of those pixels and see how the network reacted

to the altered input. This, in turn, could have extended to a potential metric similar to

Maximally Activating Features, however, remained inconclusive.

Deactivation Deletion Results

The final unsuccessful test stemmed from the implications found in exploring NNU, as

it was identified that minimising NNU produced superior results. With this implication,

an intuitive step could be to delete these particular neurons from the network and see

if performance increased, decreased, or remained the same. After various tests on the

various models available, deleting the deactivated neurons had little to no impact on

performance, as accuracy remained stagnant. Therefore, this test did not produce any

additional metrics but did solidify that removing deactivated neurons has no impact on

improving performance.

55

Chapter 5

Conclusion

5.1 Summary Of Solution

The search for qualitative assessment metrics was successful as three metrics were iden-

tified and explored for developing additional insight into the performance of transfer

learning applications.

In the investigation phase, hyperparameter sweep tests were developed to anal-

yse and compare trends across the high-level confusion matrix metrics. In addition, while

analysing the networks at the activation level using the ’reverse-engineering’ tests, a piv-

otal result was discovered in the identification of deactivated neurons; neurons with no

activation across entire datasets. Combining the sweep tests and this pivotal result, Neu-

ral Network Utilization (NNU), Activation Spectrum (AS), and Activation Range (AR)

were all identified as potential metrics to explore.

NNU assesses the percentage of deactivated neurons to total neurons across an

entire network. AS visualises the maximum activation distribution of each individual

neuron across the entire network. AR visualises the range of each layer of the network,

plotting the maximum activation per layer. The full extent of these metrics could not be

achieved using the smaller-scale experiment, as results were promising but inconclusive.

56

In the exploration phase, a larger scale experiment was developed, such that

the qualitative insights and implications of the identified metrics from the investigation

phase could be recognised and examined. Utilising the powerful high-level, robust, DL

Python library, Keras, a series of models were developed. Five models with macro-

structural differences were created, each increasing with complexity than the previous

model. The increase in complexity was intended to provide an increase in performance.

Taking the best model from the macro-models, another three models were created with

micro-structural changes between each model.

Using both the macro-models and micro-models, the three metrics were ex-

plored. Keras has powerful modelling capabilities, granting the ability to explore all in-

termediate activations within the network. These intermediate activations formed the ba-

sis of identifying deactivated neurons, extracting maximum activation values, and hence,

developing the three metrics. Using these results, visualisations of all three metrics were

developed to qualitatively assess the performance of transfer learning.

57

5.2 Implications Of Qualitative Metrics

Neural Network Utilization (NNU)

Each of the three qualitative metrics can provide additional insight into understanding

the performance of a deep learning system; and by extension, a transfer learning system.

The results from the NNU tests were the most insightful in providing a quali-

tative perspective to TL systems. It was found that across the macro-models, NNU was

inversely proportional to accuracy (see figure 5.1a), implying that a reason for superior

performing systems is the minimal percentage of deactivated neurons in the network. It

also gives credence to how to improve NNU, and therefore improve the system’s per-

formance, as seen by the macro-structural changes being contingent factors to reducing

NNU; macro-structural changes being regularization techniques, data augmentation tech-

niques, and improving data quantity and quality. The analysis of micro-models (see figure

5.1b) revealed that minor-structural changes within well-performing systems affect NNU

much less significantly compared to macro-structural changes.

(a) NNU results for macro-models 1 to 5. (b) NNU results for micro-models 5, 5a,
5b.

Figure 5.1: NNU results of all models.

58

Activation Spectrum (AS)

The results from AS tests revealed that the distribution of activation across an entire net-

work can also be used to qualitatively assess the performance of applications. Particularly

when comparing the macro-models, a high amount of deactivated neurons (which is the

first green spike in figure 5.2a) and an otherwise uniform distribution produced poorer

results, whereas having a reduced amount of deactivated neurons and a right-skewed dis-

tribution (seen in figures 5.2b and 5.2c) produced superior results. The implication of this

test reveals other potential methods of improving systems such as reassessing activation

functions, initial weight distributions, and utilizing regularization techniques such as L2

to drive weights to be smaller.

(a) Model 1 - Basic CNN
without regularization.

(b) Model 5 - TL with image
augmentation and fine-tuned

layers.

(c) Model 5b - TL with img
aug and ft layers with an

added layer.

Figure 5.2: Activation Spectra for models 1, 5 and 5b.

59

Activation Range (AR)

Finally, AR tests revealed additional qualitative understanding by analysing the maxi-

mum activations of each layer rather than individual neurons. These tests revealed that

superior performing models maintained more consistent ranges per layer in comparison

to poorer performing models, which produced more erratic distributions. This is evident

when comparing the earlier, poorer performing macro-models in figure 5.3a to the later

macro-models in the same figure and micro-models in figure 5.3b. Similarly, this metric

could be improved by assessing activation functions, weight distributions and regulariza-

tion techniques.

(a) AR macro-models. (b) AR micro-models excluding
outlier.

Figure 5.3: Activation range results for micro-models.

5.3 Future Work

The premise of the thesis was to develop potential metrics to qualitatively assess the

performance of TL systems, which was intended to be a foundation into unpacking the

’black-box’ nature of deep learning. Therefore, future work would entail taking these

metrics and exploring the ’black-box’ further. A starting point could be developing

additional relationships between the qualitative metrics and other high-level metrics from

the confusion matrix.

In addition, several other concepts were developed to identify additional qual-

itative metrics, such as exposing the specific features of data that triggered significant

activation (seen in figure 5.4), which was discussed in section 4.2.5.

60

Figure 5.4: Visualisation created in an attempt to expose specific features which
triggered significant activation within networks.

Another area that was not explored was analysing how weights changed before

and after the transfer of knowledge occurred, which could also develop additional quali-

tative metrics. Most of the qualitative metrics from the thesis were gleaned from analysis

at the activation level, and analysing the weights themselves would be the next layer of

abstraction.

61

Bibliography

[1] O. Abdel-Hamid, L. Deng, and D. Yu. Exploring convolutional neural network structures

and optimization techniques for speech recognition. In Interspeech, volume 11, pages 73–5,

2013.

[2] B. Ahmed. Summary of transfer learning, 2019. School of El. Eng. and Telecom., UNSW.

[3] A. Bahnsen. Building ai applications using deep learning. https://albahnsen.com/2017/

06/06/building-ai-applications-using-deep-learning/, May 2018.

[4] R. Caruana, D. L. Silver, J. Baxter, T. M. Mitchell, L. Y. Pratt, and S. Thrun. Learning

to learn: knowledge consolidation and transfer in inductive systems, 1995.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09, 2009.

[6] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and Trends R©

in Signal Processing, 7(3–4):197–387, 2014.

[7] M. M. Ghazi, B. Yanikoglu, and E. Aptoula. Plant identification using deep neural networks

via optimization of transfer learning parameters. Neurocomputing, 235:228–235, 2017.

[8] A. Ghoshal, P. Swietojanski, and S. Renals. Multilingual training of deep neural networks.

In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages

7319–7323, May 2013.

[9] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,

J. Cai, et al. Recent advances in convolutional neural networks. Pattern Recognition,

77:354–377, 2018.

62

https://albahnsen.com/2017/06/06/building-ai-applications-using-deep-learning/
https://albahnsen.com/2017/06/06/building-ai-applications-using-deep-learning/

[10] Y. He and G. Ding. Deep transfer learning for image emotion analysis: Reducing marginal

and joint distribution discrepancies together. Neural Processing Letters, Apr 2019.

[11] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and J. Dean.

Multilingual acoustic models using distributed deep neural networks. In 2013 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing, pages 8619–8623, May

2013.

[12] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks for acoustic

modeling in speech recognition. Signal Processing Magazine, 2012.

[13] J. Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-language knowledge transfer using

multilingual deep neural network with shared hidden layers. In 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 7304–7308, May 2013.

[14] Kaggle. Dogs vs. cats. https://www.kaggle.com/c/dogs-vs-cats/data.

[15] A. Kensert, P. J. Harrison, and O. Spjuth. Transfer learning with deep convolutional neural

networks for classifying cellular morphological changes. SLAS DISCOVERY: Advancing

Life Sciences R&D, 24(4):466–475, 2019. PMID: 30641024.

[16] H. Li, N. A. Parikh, and L. He. A novel transfer learning approach to enhance deep neural

network classification of brain functional connectomes. Frontiers in neuroscience, 12:491,

2018.

[17] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and

E. Muharemagic. Deep learning applications and challenges in big data analytics. Journal

of Big Data, 2(1):1, 2015.

[18] A. Ng. Nips 2016 tutorial: "nuts and bolts of building ai applications using deep learning"

by andrew ng, May 2018.

[19] A. Ng. Improving deep neural networks: Hyperparameter tuning, regularization and

optimization. https://www.coursera.org/learn/deep-neural-network/home/welcome,

March 2019.

[20] Nielsen and M. A. Neural networks and deep learning, Jan 1970.

63

https://www.kaggle.com/c/dogs-vs-cats/data
 https://www.coursera.org/learn/deep-neural-network/home/welcome

[21] S. Nitish. Dropout: A simple way to prevent neural networks from overfitting. J. Machine

Learning Reasearch, 2014:1929.

[22] C. Olah. Understanding lstm networks. https://colah.github.io/posts/2015-08-

Understanding-LSTMs/, Aug 2015.

[23] L. Perez and J. Wang. The effectiveness of data augmentation in image classification using

deep learning. arXiv preprint arXiv:1712.04621, 2017.

[24] R. Ranjan, S. Sankar, C. Castillo, and R. Chellappa. An all-in-one convolutional neural

network for face analysis. 11 2016.

[25] J. Rodriguez. What’s new in deep learning research: Jennifer aniston and the process

of understanding learning by. https://medium.com/jrodthoughts/whats-new-in-

deep-learning-research-jennifer-aniston-and-the-process-of-understanding-

learning-by-d961ae2df0e3, Mar 2018.

[26] S. Romdhani. Implementation of dnn-hmm acoustic models for phoneme recognition, 2015.

[27] P. Roy. Natural images. https://www.kaggle.com/prasunroy/natural-images, Aug

2018.

[28] S. Ruder. Transfer learning - machine learning’s next frontier, Apr 2019.

[29] P. S. A survey on transfer learning. J. Knowledge and Data Engineering, IEEE Transac-

tions on, 22:1345, 2010.

[30] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller. Evaluating the

visualization of what a deep neural network has learned. IEEE transactions on neural

networks and learning systems, 28(11):2660–2673, 2016.

[31] D. Sarkar. A comprehensive hands-on guide to transfer learning with real-world applica-

tions in deep learning, Nov 2018.

[32] L. Shao, F. Zhu, and X. Li. Transfer learning for visual categorization: A survey. May

2015.

[33] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep

learning. Journal of Big Data, 6(1):60, 2019.

64

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/jrodthoughts/whats-new-in-deep-learning-research-jennifer-aniston-and-the-process-of-understanding-learning-by-d961ae2df0e3
https://medium.com/jrodthoughts/whats-new-in-deep-learning-research-jennifer-aniston-and-the-process-of-understanding-learning-by-d961ae2df0e3
https://medium.com/jrodthoughts/whats-new-in-deep-learning-research-jennifer-aniston-and-the-process-of-understanding-learning-by-d961ae2df0e3
https://www.kaggle.com/prasunroy/natural-images

[34] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] S. Tejaswi and S. Umesh. Dnn acoustic models for dysarthric speech. In 2017 Twenty-third

National Conference on Communications (NCC), pages 1–4, March 2017.

[36] Udacity. Aind term 2 - vui capstone project. https://github.com/udacity/AIND-VUI-

Capstone, Feb 2018. [Online; accessed 1-May-2019].

[37] Ujjwalkarn. An intuitive explanation of convolutional neural networks. https://

ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/, May 2017.

[38] D. Wang and T. F. Zheng. Transfer learning for speech and language processing. CoRR,

abs/1511.06066, 2015.

[39] D. Yan and S. Guo. Leveraging contextual sentences for text classification by using a neural

attention model. Computational intelligence and neuroscience, 2019, 2019.

[40] W. Yue. Constrained deep transfer feature learning and its applications. C. In CVPR,

2016.

[41] W. Zhao. Research on the deep learning of the small sample data based on transfer learning.

AIP Conference Proceedings, 1864(1):020018, 2017.

[42] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using

cycle-consistent adversarial networks. In Proceedings of the IEEE international conference

on computer vision, pages 2223–2232, 2017.

65

https://github.com/udacity/AIND-VUI-Capstone
https://github.com/udacity/AIND-VUI-Capstone
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Appendix

Appendix 1 - Risk assessment

66

H
S

R
is

k
M

an
ag

em
en

t
Fo

rm

V
er

si
o

n
 3

.5
 2

3
rd

 A
p

ri
l 2

0
1

3

 P
a
g

e
 2

 o
f
5

T
a

s
k
/

S
c
e

n
a

ri
o

H
a

za
rd

A
s
s
o
c
ia

te
d

h
a

rm

E
x
is

ti
n

g
 c

o
n

tr
o

ls

A
n

y
 a

d
d

it
io

n
a
l
c
o

n
tr

o
ls

re
q

u
ir
e

d
?

R
is

k
 R

a
ti
n
g

C
o

s
t

o
f
c
o
n

tr
o

ls

(i
n

 t
e

rm
s
 o

f
ti
m

e
,

e
ff

o
rt

,
m

o
n
e

y
)

Is
 t

h
is

re
a

s
o
n

a
b
ly

p
ra

c
ti
c
a
b

le

Y

/N

C

L

R

U
s
in

g
 o

n

c
a

m
p

u
s

c
o

m
p

u
te

r
fa

c
ili

ty

T
ri

p
p

in
g

 o
n

o

b
s
ta

c
le

s

(c
h

a
ir
s
,

b
a

g
s
,

w
ir

e
s
)

S
lip

/t
ri
p

/f
a

ll
in

ju
ry



U
n

iv
e

rs
it
y
 W

H
 &

 S
 i
s
s
u

e
s
 a

re
 e

n
fo

rc
e

d
 a

c
ro

s
s
 a

ll
c
a
m

p
u

s
 l
a
b

s

(l
o

o
s
e

 w
ir

e
s
 a

re
 s

e
c
u

re
d

,
c
h

a
ir
s
 h

a
v
e

 d
e

s
ig

n
a
te

d
 s

p
a
c
e
s
,

s
h

a
rp

 h
a

z
a

rd
s
 a

re
 m

in
im

is
e

d
 o

r
id

e
n

ti
fi
e

d
 e

tc
.)


L

a
b

o
ra

to
ry

 r
e

g
u
la

ti
o

n
s
 a

re
 p

u
b
lic

ly
 d

is
p

la
y
e

d
 i
n

 a
ll

la
b
s


B

a
g

s
/e

x
te

rn
a

l
o

b
s
ta

c
le

s
 a

re
 p

la
c
e

d

in
 s

a
fe

 s
e

c
u

re
 s

p
a
c
e
s

(u
n

d
e

r
d

e
s
k
s
)


F

o
llo

w
in

g
 s

ta
n

d
a

rd

la
b

 s
a

fe
ty

 p
ro

to
c
o

l
(n

o

ru
n

n
in

g
 e

tc
.)

2

D

L

N
o

 c
o
s
t

o
th

e
r

th
a

n
 b

e
in

g
 a

le
rt

Y

U
s
in

g
 o

n

e
le

c
tr

ic
a

l
e

q
u

ip
m

e
n

t
(c

o
m

p
u

te
rs

)

E
le

c
tr

ic
a
l

in
c
id

e
n

ts

(e
le

c
tr

o
c
u

ti
o

n
)

P
h

y
s
ic

a
l

in
ju

ry


U

N
S

W
 h

a
v
e

 t
e

s
te

d
 a

n
d

 t
a

g
g
e
d

 e
le

c
tr

ic
a

l
e

q
u

ip
m

e
n

t
b

a
s
e

d
 o

n

th
e

 A
u
s
tr

a
lia

n
 s

ta
n

d
a

rd
 A

S
3

7
6
0


E

x
is

ti
n

g
 s

y
s
te

m
 t
o

 r
e

p
o

rt
 a

n
y
 d

a
m

a
g

e
d

 e
le

c
tr

ic
a

l
e

q
u
ip

m
e

n
t

(p
o

w
e

r
c
o

rd
s
 o

r
p
o

w
e

r
p

o
in

ts
)

to
 s

u
p

e
rv

is
in

g
 s

ta
ff

 f
o

r
s
tu

d
e

n
ts

u

s
in

g
 l
a
b

s


U

s
e

 r
e
s
id

u
a

l
c
u

rr
e
n

t
d

e
v
ic

e
s
 w

it
h

 e
le

c
tr

ic
a
l

e
q

u
ip

m
e
n

t
(s

p
e

c
if
ic

e

x
te

n
s
io

n
 c

o
rd

s
)

th
a

t
re

d
u

c
e

 r
is

k
 o

f
e

le
c
tr

o
c
u

ti
o
n

 i
f
fa

u
lt

a
ri

s
e
s

3

E

M

N
o

 a
d

d
it
io

n
a

l
c
o

s
t
if
 r

e
s
id

u
a
l

c
u

rr
e

n
t

d
e
v
ic

e
s

a
lr

e
a

d
y
 b

e
in

g

e
m

p
lo

y
e
d

Y

E
x
te

n
d
e

d

u
s
e

 o
f

c
o

m
p

u
te

rs

S
tr

a
in

in
g

n

e
c
k
/b

a
c
k
/

e
y
e

s

P
h

y
s
ic

a
l

in
ju

ry


W

e
ll-

s
u

p
p

o
rt

e
d

 c
h

a
ir
s
 s

u
p

p
lie

d
 i
n

 U
N

S
W

 l
a

b
s


F

o
llo

w
 e

rg
o
n

o
m

ic
 s

a
fe

ty
 a

t
c
o
m

p
u

te
rs

 i
n

fo
rm

a
ti
o

n
 s

h
e
e

t
in

 l
a

b
s


T

a
k
e

 r
e

g
u
la

r
b

re
a

k
s

(e
v
e

ry
 3

0
 m

in
u

te
s
)


S

it
 w

it
h

 g
o

o
d

 p
o
s
tu

re

1

C

L

N
o

 c
o
s
t

o
th

e
r

th
a

n
 b

e
in

g
 a

le
rt

Y

R
u

n
n

in
g

c
o

d
e
 o

n
 N

C
I

h
ig

h

p
e

rf
o

rm
a

n
c
e

c
lu

s
te

r

C
ra

s
h

in
g

/
fa

u
lt
in

g

s
y
s
te

m

A
ff

e
c
ts

o

th
e

r
q

u
e

u
e
d

jo

b
s
 a

n
d

h
e

a
lt
h

 o
f

c
lu

s
te

r


L

im
it
s
 e

x
is

t
a

n
d

 m
u
s
t

b
e
 s

p
e

c
if
ie

d
 w

h
e

n
 s

u
b
m

it
ti
n

g
 j
o

b
 t
o

 r
u

n


E

x
is

ti
n

g
 s

u
p

p
o

rt
 e

x
is

ts
 v

ia
 t
ic

k
e

ti
n

g
 s

y
s
te

m
 o

r
b

y
 e

m
a

ili
n

g

h
e

lp
@

n
c
i.
o

rg
.a

u
 i
f

C
P

U
 i
s
 u

n
a
b

le
 t
o

 h
a
n

d
le

 s
u
p

p
lie

d
 j
o

b
 l
im

it


E

n
s
u

re
 j
o

b

p
a

ra
m

e
te

rs
 a

re

a
c
c
u

ra
te

 f
o

r
w

h
a

t
is

b

e
in

g
 s

u
b

m
it
te

d

1

E

L

C
o

s
ts

 s
o

m
e

e

ff
o

rt
 t
o

 e
n
s
u

re

a
c
c
u

ra
te

p

a
ra

m
e

te
r

c
a

lc
u

la
ti
o
n

Y

Id
e

n
ti

fy
 h

a
z
a

rd
s

 a
n

d
 c

o
n

tr
o

l
th

e
 r

is
k
s

.
1
.

A
n
 a

c
ti
v
it
y
 m

a
y
 b

e
 d

iv
id

e
d
 i
n

to
 t
a
s
k
s
.
F

o
r

e
a
c
h
 t
a
s
k
 i
d

e
n
ti
fy

 t
h
e
 h

a
z
a
rd

s
 a

n
d
 a

s
s
o
c
ia

te
d
 r

is
k
s
.
A

ls
o
 l
is

t
th

e
 p

o
s
s
ib

le
 s

c
e
n
a
ri
o

s
 w

h
ic

h
 c

o
u
ld

 s
o

o
n
e
r

o
r

la
te

r
c
a
u
s
e
 h

a
rm

.
2
.

D
e
te

rm
in

e
 c

o
n
tr

o
ls

 n
e
c
e
s
s
a
ry

 b
a
s
e
d
 o

n
 l
e

g
is

la
ti
o

n
,
c
o
d
e
s
 o

f
p
ra

c
ti
c
e
,
A

u
s
tr

a
lia

n
 s

ta
n
d
a
rd

s
,
m

a
n
u
fa

c
tu

re
r’

s
 i
n
s
tr

u
c
ti
o

n
s
 e

tc
.

3
.

L
is

t
e
x
is

ti
n

g
 r

is
k
 c

o
n
tr

o
ls

 a
n
d
 a

n
y
 a

d
d
it
io

n
a
l
c
o
n
tr

o
ls

 t
h
a
t

n
e
e
d
 t

o
 b

e
 i
m

p
le

m
e
n
te

d

4
.

R
a
te

 t
h
e
 r

is
k
 o

n
c
e
 a

ll
c
o
n
tr

o
ls

 a
re

 i
n

 p
la

c
e
 u

s
in

g
 t

h
e
 m

a
tr

ix
 i
n

 H
S

3
2
9
 R

is
k
 M

a
n
a
g
e
m

e
n
t
P

ro
c
e
d
u
re

 S

H
A

D
E

D
 G

R
E

Y
 A

R
E

A
S

If

 y
o
u
 n

e
e
d
 t

o
 d

e
te

rm
in

e
 w

h
e
th

e
r

it
’s

 r
e
a
s
o
n
a
b
ly

 p
ra

c
ti
c
a
b
le

 t
o
 i
m

p
le

m
e
n
t

a
 c

o
n
tr

o
l,
 b

a
s
e
d
 o

n
 t

h
e
 r

is
k
 c

o
m

p
le

te
 t
h
e
 s

h
a
d
e
d
 g

re
y
 c

o
lu

m
n

s

 F
e

e
l
fr

e
e
 t
o
 r

e
s
iz

e
 t

h
e
 b

o
x
e
s
 t

o
 s

u
it
 y

o
u
r

s
it
u
a
ti
o

n
/t

h
e
 a

m
o
u
n
t
o
f
te

x
t
y
o
u
 n

e
e
d
 t

o
 u

s
e

H
S

R
is

k
M

an
ag

em
en

t
Fo

rm

V
er

si
o

n
 3

.5
 2

3
rd

 A
p

ri
l 2

0
1

3

 P
a
g

e
 3

 o
f
5

H
S

R
is

k
M

an
ag

em
en

t
Fo

rm

V
er

si
o

n
 3

.5
 2

3
rd

 A
p

ri
l 2

0
1

3

 P
a
g

e
 4

 o
f
5

 Im

p
le

m
e

n
ta

ti
o

n

A
d

d
it

io
n

a
l

c
o

n
tr

o
l

m
e

a
s

u
re

s
 n

e
e
d

e
d

:
R

e
s

o
u

rc
e

s
 r

e
q

u
ir

e
d

R

e
s

p
o

n
s

ib
le

 p
e

rs
o

n

D
a

te
 o

f
im

p
le

m
e

n
ta

ti
o

n

 N
/A

 R
E

V
IE

W

S
c
h

e
d

u
le

d
 r

e
v
ie

w
 d

a
te

:

A
re

 a
ll

c
o

n
tr

o
l
m

e
a
s
u

re
s
 i
n

 p
la

c
e

?

A
re

 c
o

n
tr

o
ls

 e
lim

in
a
ti
n

g
 o

r
m

in
im

is
in

g
 t

h
e

 r
is

k
?

A
re

 t
h

e
re

 a
n

y
 n

e
w

 p
ro

b
le

m
s
 w

it
h

 t
h

e
 r

is
k
?

R
e

v
ie

w
 b

y
:

(n
a

m
e

)

R
e

v
ie

w
 d

a
te

:

R
is

k
 m

a
n

a
g

e
m

e
n

t
n

a
m

e
 a

n
d

 v
e

rs
io

n
 n

u
m

b
e

r:

 I
 h

a
v
e

 r
e

a
d

 a
n

d
 u

n
d

e
rs

ta
n

d
 t

h
is

 r
is

k
 m

a
n

a
g

e
m

e
n

t
fo

rm

L
is

t
e

m
e

rg
e

n
c

y
 p

ro
c

e
d

u
re

s
 a

n
d

 c
o

n
tr

o
ls

L

is
t

e
m

e
rg

e
n

c
y
 c

o
n

tr
o

ls
 f

o
r

h
o

w
 t

o
 d

e
a
l
w

it
h

 f
ir

e
s
,
s
p

il
ls

 o
r

e
x
p

o
s

u
re

 t
o

 h
a

z
a
rd

o
u

s
 s

u
b

s
ta

n
c

e
s
 a

n
d

/o
r

e
m

e
rg

e
n

c
y
 s

h
u

td
o

w
n

 p
ro

c
e
d

u
re

s



G
o

 t
o

 e
m

e
rg

e
n

c
y
 e

v
a

c
u

a
ti
o

n
 p

o
in

t
o

n
 c

a
m

p
u
s
 (

re
fe

r
to

 c
a
m

p
u
s
 m

a
p

)



U
s
e

 f
ir
e

 e
x
it
s
 i
n

s
te

a
d

 o
f

lif
ts

 i
n

 c
a

s
e

 o
f

e
m

e
rg

e
n

c
y



L
e
a

v
e

 i
n

 a
n
 o

rd
e
rl

y
 m

a
n
n

e
r

a
n
d

 e
n
s
u

re
 s

a
fe

ty
 f

ir
s
t

ra
th

e
r

th
a

n
 r

e
tr

ie
v
in

g



F
o

llo
w

 “
E

m
e

rg
e

n
c
y
 o

n
 C

a
m

p
u
s
”

in
s
tr

u
c
ti
o

n
s
 p

u
b

lic
ly

 d
is

p
la

y
e

d
 i
n

 l
a

b
s



F
o

r
h

a
z
a

rd
o

u
s
 s

p
ill

s
,

if
 a

 m
a

jo
r

s
p

ill
,

e
v
a

c
u

a
te

.
E

ls
e

,
w

o
rk

 i
n

 p
a

ir
s
 t

o
 c

le
a

n
 u

p
 s

p
ill

 (
a

s
 p

e
r

“E
m

e
rg

e
n

c
y
 o

n
 C

a
m

p
u
s
”)

 A
c

k
n

o
w

le
d

g
e

m
e

n
t

o
f

U
n

d
e

rs
ta

n
d

in
g

A
ll

p
e
rs

o
n
s
 p

e
rf

o
rm

in
g
 t
h
e
s
e
 t

a
s
k
s
 m

u
s
t
s
ig

n
 t

h
a
t
th

e
y
 h

a
v
e
 r

e
a
d
 a

n
d
 u

n
d
e
rs

to
o
d
 t
h
e
 r

is
k
 m

a
n
a
g
e
m

e
n
t
(a

s
 d

e
s
c
ri
b

e
d
 i
n
 H

S
3
2
9
 R

is
k
 M

a
n
a
g
e
m

e
n
t
P

ro
c
e
d
u

re
).

N
o

te
:

fo
r

a
c
ti
v
it
ie

s
 w

h
ic

h
 a

re
 l
o

w
 r

is
k
 o

r
in

c
lu

d
e
 a

 l
a

rg
e
 g

ro
u
p
 o

f
p
e
o
p
le

 (
e
.g

.
o
p
e
n
 d

a
y
s
,
B

B
Q

’s
,
s
tu

d
e
n
t
c
la

s
s
e
s
 e

tc
),

 o
n
ly

 t
h
e
 p

e
rs

o
n
s
 u

n
d
e
rt

a
k
in

g
 t
h
e
 k

e
y
 a

c
ti
v
it
ie

s
 n

e
e
d
 t
o
 s

ig
n
 b

e
lo

w
.

 F
o

r
a
ll

o
th

e
rs

 i
n

v
o
lv

e
d
 i
n

 s
u
c
h

a
c
ti
v
it
ie

s
,
th

e
 i
n
fo

rm
a
ti
o

n
 c

a
n
 b

e
 c

o
v
e
re

d
 b

y
 o

th
e
r

m
e
th

o
d
s
 i
n
c
lu

d
in

g
 f

o
r

e
x
a
m

p
le

 a
 s

a
fe

ty
 b

ri
e

fi
n

g
,
in

d
u
c
ti
o

n
,

a
n
d
/o

r
s
a
fe

ty
 i
n
fo

rm
a
ti
o

n
 s

h
e
e
t

(e
n
s
u
re

 t
h

e
 m

e
th

o
d
 o

f
c
o
m

m
u
n
ic

a
ti
n

g
 t

h
is

 i
n

fo
rm

a
ti
o

n
 i
s
 s

p
e
c
if
ie

d
 h

e
re

)

Appendix 2 - Investigation Phase

Maximum Activation Test

Figure 5: Input image for each individual neuron that produced the maximum
activation.

’Reverse Engineering’ Test

Figure 6: ’Reverse engineering’ test results. Neurons 4, 7, 12, 14 and 19 are deactivated.
73

Full sweep test results for baseline cat, dog and TL cat to dog

(a) Baseline cat model (b) Baseline dog model

(c) TL cat to dog model

Figure 7: Comparing baseline cat, baseline dog and TL cat to dog models for accuracy
using all four sweep tests.

74

(a) Baseline cat model (b) Baseline dog model

(c) TL cat to dog model

Figure 8: Comparing baseline cat, baseline dog and TL cat to dog models for accuracy
using all four sweep tests.

75

Appendix 3 - Python Code For Exploration Phase

Detailed Model Structures

Macro-Models Model Summaries

Model 1 Code
Model 1 − Basic CNN

model = Sequential()

model.add(Conv2D(16, kernel_size=(3, 3), activation=’relu’,

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation=’relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation=’relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(512, activation=’relu’))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=’rmsprop’,

metrics=[’accuracy’])

model.summary()

Model 1 Summary
Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 148, 148, 16) 448

max_pooling2d_1 (MaxPooling2 (None, 74, 74, 16) 0

conv2d_2 (Conv2D) (None, 72, 72, 64) 9280

max_pooling2d_2 (MaxPooling2 (None, 36, 36, 64) 0

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

max_pooling2d_3 (MaxPooling2 (None, 17, 17, 128) 0

flatten_1 (Flatten) (None, 36992) 0

dense_1 (Dense) (None, 512) 18940416

dense_2 (Dense) (None, 1) 513

===

Total params: 19,024,513

Trainable params: 19,024,513

Non−trainable params: 0

76

Model 2 Code

Model 2 − CNN with regularization and image augmentation

Develop augmented image data to add additional data from existing ddata

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

img_id = 1

cat_generator = train_datagen.flow(train_imgs[img_id:img_id+1], train_labels[img_id:img_id+1],

batch_size=1)

cat = [next(cat_generator) for i in range(0,5)]

fig , ax = plt.subplots(1,5, figsize =(16, 6))

print(’Labels: ’ , [item [1][0] for item in cat])

l = [ax[i]. imshow(cat[i][0][0]) for i in range(0,5)]

Load data generators

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

input_shape = (150, 150, 3)

Define structure

model = Sequential()

model.add(Conv2D(16, kernel_size=(3, 3), activation=’relu’,

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation=’relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation=’relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation=’relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e−4),

metrics=[’accuracy’])

model.summary()

77

Model 2 Summary

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 148, 148, 16) 448

max_pooling2d_1 (MaxPooling2 (None, 74, 74, 16) 0

conv2d_2 (Conv2D) (None, 72, 72, 64) 9280

max_pooling2d_2 (MaxPooling2 (None, 36, 36, 64) 0

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

max_pooling2d_3 (MaxPooling2 (None, 17, 17, 128) 0

conv2d_4 (Conv2D) (None, 15, 15, 128) 147584

max_pooling2d_4 (MaxPooling2 (None, 7, 7, 128) 0

flatten_1 (Flatten) (None, 6272) 0

dense_1 (Dense) (None, 512) 3211776

dropout_1 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 512) 262656

dropout_2 (Dropout) (None, 512) 0

dense_3 (Dense) (None, 1) 513

===

Total params: 3,706,113

Trainable params: 3,706,113

Non−trainable params: 0

VGG-16 Model Summary
Layer Type Layer Name Layer Trainable

0 <keras.engine.input_layer.InputLayer object at 0x0000017A55CD9D30> input_1 False

1 <keras.layers.convolutional.Conv2D object at 0x0000017A6133EBA8> block1_conv1 False

2 <keras.layers.convolutional.Conv2D object at 0x0000017A6133E668> block1_conv2 False

3 <keras.layers.pooling.MaxPooling2D object at 0x0000017AF0CA3128> block1_pool False

4 <keras.layers.convolutional.Conv2D object at 0x0000017AB01FC390> block2_conv1 False

5 <keras.layers.convolutional.Conv2D object at 0x0000017AF0DAB0F0> block2_conv2 False

6 <keras.layers.pooling.MaxPooling2D object at 0x0000017AF0DAB9B0> block2_pool False

7 <keras.layers.convolutional.Conv2D object at 0x0000017AF0DAB940> block3_conv1 False

8 <keras.layers.convolutional.Conv2D object at 0x0000017AF0DF5278> block3_conv2 False

9 <keras.layers.convolutional.Conv2D object at 0x0000017AF0DF5F98> block3_conv3 False

10 <keras.layers.pooling.MaxPooling2D object at 0x0000017AF0E29F98> block3_pool False

11 <keras.layers.convolutional.Conv2D object at 0x0000017AF0E29EF0> block4_conv1 False

12 <keras.layers.convolutional.Conv2D object at 0x0000017AF0E5F2E8> block4_conv2 False

13 <keras.layers.convolutional.Conv2D object at 0x0000017AF0E77BA8> block4_conv3 False

14 <keras.layers.pooling.MaxPooling2D object at 0x0000017AF0E8E9E8> block4_pool False

15 <keras.layers.convolutional.Conv2D object at 0x0000017AF0E8E8D0> block5_conv1 False

16 <keras.layers.convolutional.Conv2D object at 0x0000017AF0EC3710> block5_conv2 False

17 <keras.layers.convolutional.Conv2D object at 0x0000017AF0EDF518> block5_conv3 False

18 <keras.layers.pooling.MaxPooling2D object at 0x0000017AF0EF89B0> block5_pool False

19 <keras.layers.core.Flatten object at 0x0000017A6133EB70> flatten_2 False

78

Model 3 Code
Model 3 − CNN with pre−trained feature extractor

input_shape = vgg_model.output_shape[1]

model = Sequential()

model.add(InputLayer(input_shape=(input_shape,)))

model.add(Dense(512, activation=’relu’, input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e−5),

metrics=[’accuracy’])

model.summary()

Model 3 Summary
Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 512) 4194816

dropout_1 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 512) 262656

dropout_2 (Dropout) (None, 512) 0

dense_3 (Dense) (None, 1) 513

===

Total params: 4,457,985

Trainable params: 4,457,985

Non−trainable params: 0

79

Model 4 Code
Model 4 − CNN with pre−trained feature extractor (with image augmentation)

Augment image data

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

model = Sequential()

model.add(vgg_model)

model.add(Dense(512, activation=’relu’, input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=2e−5),

metrics=[’accuracy’])

model.summary()

Model 4 Summary

Layer (type) Output Shape Param #

===

model_1 (Model) (None, 8192) 14714688

dense_7 (Dense) (None, 512) 4194816

dropout_5 (Dropout) (None, 512) 0

dense_8 (Dense) (None, 512) 262656

dropout_6 (Dropout) (None, 512) 0

dense_9 (Dense) (None, 1) 513

===

Total params: 19,172,673

Trainable params: 4,457,985

Non−trainable params: 14,714,688

80

Model 5 Code
Model 5 − CNN with pre−trained feature extractor (with image augmentation and fine−tuning)

vgg_model.trainable = True

set_trainable = False

for layer in vgg_model.layers:

if layer .name in [’block5_conv1’, ’block4_conv1’]:

set_trainable = True

if set_trainable:

layer . trainable = True

else :

layer . trainable = False

layers = [(layer , layer .name, layer.trainable) for layer in vgg_model.layers]

pd.DataFrame(layers, columns=[’Layer Type’, ’Layer Name’, ’Layer Trainable’])

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

model = Sequential()

model.add(vgg_model)

model.add(Dense(512, activation=’relu’, input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e−5),

metrics=[’accuracy’])

Model 5 Summary

Layer (type) Output Shape Param #

===

model_1 (Model) (None, 8192) 14714688

dense_10 (Dense) (None, 512) 4194816

dropout_7 (Dropout) (None, 512) 0

dense_11 (Dense) (None, 512) 262656

dropout_8 (Dropout) (None, 512) 0

dense_12 (Dense) (None, 1) 513

===

Total params: 19,172,673

Trainable params: 17,437,185

Non−trainable params: 1,735,488

81

Micro-Models Model Summaries

Model 5a Code
Model 5a − CNN with pre−trained feature extractor (with fine−tuning) −> altered neurons in dense layers

vgg_model.trainable = True

set_trainable = False

for layer in vgg_model.layers:

if layer .name in [’block5_conv1’, ’block4_conv1’]:

set_trainable = True

if set_trainable:

layer . trainable = True

else :

layer . trainable = False

layers = [(layer , layer .name, layer.trainable) for layer in vgg_model.layers]

pd.DataFrame(layers, columns=[’Layer Type’, ’Layer Name’, ’Layer Trainable’])

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

model = Sequential()

model.add(vgg_model)

model.add(Dense(600, activation=’relu’, input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(400, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e−5),

metrics=[’accuracy’])

model.summary()

Model 5a Summary

Layer (type) Output Shape Param #

===

model_1 (Model) (None, 8192) 14714688

dense_4 (Dense) (None, 600) 4915800

dropout_3 (Dropout) (None, 600) 0

dense_5 (Dense) (None, 400) 240400

dropout_4 (Dropout) (None, 400) 0

dense_6 (Dense) (None, 1) 401

===

Total params: 19,871,289

Trainable params: 18,135,801

Non−trainable params: 1,735,488

82

Model 5b Code
Model 5b − CNN with pre−trained feature extractor (with fine−tuning) => additional layer

vgg_model.trainable = True

set_trainable = False

for layer in vgg_model.layers:

if layer .name in [’block5_conv1’, ’block4_conv1’]:

set_trainable = True

if set_trainable:

layer . trainable = True

else :

layer . trainable = False

layers = [(layer , layer .name, layer.trainable) for layer in vgg_model.layers]

pd.DataFrame(layers, columns=[’Layer Type’, ’Layer Name’, ’Layer Trainable’])

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

model = Sequential()

model.add(vgg_model)

model.add(Dense(512, activation=’relu’, input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e−5),

metrics=[’accuracy’])

model.summary()

Model 5b Summary
Layer (type) Output Shape Param #

===

model_1 (Model) (None, 8192) 14714688

dense_7 (Dense) (None, 512) 4194816

dropout_5 (Dropout) (None, 512) 0

dense_8 (Dense) (None, 512) 262656

dropout_6 (Dropout) (None, 512) 0

dense_9 (Dense) (None, 512) 262656

dropout_7 (Dropout) (None, 512) 0

dense_10 (Dense) (None, 1) 513

===

Total params: 19,435,329

Trainable params: 17,699,841

Non−trainable params: 1,735,488

83

Model 5c Code
Model 5c − CNN with pre−trained feature extractor (with fine−tuning) => changed LR

vgg_model.trainable = True

set_trainable = False

for layer in vgg_model.layers:

if layer .name in [’block5_conv1’, ’block4_conv1’]:

set_trainable = True

if set_trainable:

layer . trainable = True

else :

layer . trainable = False

layers = [(layer , layer .name, layer.trainable) for layer in vgg_model.layers]

pd.DataFrame(layers, columns=[’Layer Type’, ’Layer Name’, ’Layer Trainable’])

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

model = Sequential()

model.add(vgg_model)

model.add(Dense(512, activation=’relu’, input_dim=input_shape))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=2e−5),

metrics=[’accuracy’])

Model 5c Summary

Layer (type) Output Shape Param #

===

model_1 (Model) (None, 8192) 14714688

dense_10 (Dense) (None, 512) 4194816

dropout_7 (Dropout) (None, 512) 0

dense_11 (Dense) (None, 512) 262656

dropout_8 (Dropout) (None, 512) 0

dense_12 (Dense) (None, 1) 513

===

Total params: 19,172,673

Trainable params: 17,437,185

Non−trainable params: 1,735,488

84

Exploration Metric Tests

Imports

#!/usr/bin/env python

coding: utf−8

"""

Final Large Scale TL Experiment For Thesis C

Author: Joel Smith z5076397

After completing several small scale investigations into TL for image classification , building a DNN from scratch using numpy, a

larger scale investigation will act as the final experiment for the thesis project .

This larger scale investigation is based off

https://towardsdatascience.com/a−comprehensive−hands−on−guide−to−transfer−learning−with−real−world−applications−in

−deep−learning−212bf3b2f27a where the famous ’Dog vs. Cat’ dataset will be used. The dataset contains 25,000 images of dogs and cats

to be applied on the pretrained VGG−16 model trained on the ImageNet database.

"""

Import methods created by author

import tl_metric_lib as tml

Basic imports

import glob

import numpy as np

import os

import math

import re

Visualisations

import matplotlib.pyplot as plt

from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array, array_to_img

from IPython.display import display

from PIL import Image

Pre−trained models

from keras.applications import vgg16

from keras.models import Model

import keras

import pandas as pd

CNN methods

from keras. layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, InputLayer, Lambda

from keras.models import Sequential

from keras import optimizers

Evaluating models

from keras.models import load_model

import model_evaluation_utils as meu

from sklearn import metrics

import keras.backend as K

85

Global definitions

Load all models and parameters

input_shape = (150, 150, 3)

IMG_DIM = (150, 150)

load saved models

basic_cnn = load_model(’cats_dogs_basic_cnn.h5’)

img_aug_cnn = load_model(’cats_dogs_cnn_img_aug.h5’)

tl_cnn = load_model(’cats_dogs_tlearn_basic_cnn.h5’)

tl_img_aug_cnn = load_model(’cats_dogs_tlearn_img_aug_cnn.h5’)

tl_img_aug_finetune_cnn = load_model(’cats_dogs_tlearn_finetune_img_aug_cnn.h5’)

load other configurations

IMG_DIM = (150, 150)

input_shape = (150, 150, 3)

num2class_label_transformer = lambda l: [’cat’ if x == 0 else ’dog’ for x in l]

class2num_label_transformer = lambda l: [0 if x == ’cat’ else 1 for x in l]

Use a pre−trained model as a feature extractor and fine tune

vgg = vgg16.VGG16(include_top=False, weights=’imagenet’,

input_shape=input_shape)

output = vgg.layers[−1].output

output = keras.layers.Flatten()(output)

vgg_model = Model(vgg.input, output)

vgg_model.trainable = False

for layer in vgg_model.layers:

layer . trainable = False

pd.set_option(’max_colwidth’, −1)

layers = [(layer , layer .name, layer.trainable) for layer in vgg_model.layers]

pd.DataFrame(layers, columns=[’Layer Type’, ’Layer Name’, ’Layer Trainable’])

Load and prepare dataset

test_files = glob.glob(’test_data/∗’)

test_imgs = [img_to_array(load_img(img, target_size=IMG_DIM)) for img in test_files]

test_imgs = np.array(test_imgs)

print(test_files [0])

test_labels = [fn. split (’\\’) [1]. split (’ . ’) [0]. strip () for fn in test_files]

test_imgs_scaled = test_imgs.astype(’float32’)

test_imgs_scaled /= 255

test_labels_enc = class2num_label_transformer(test_labels)

86

NNU Methods

"""

Metric Methods

"""

def NNU_comparison(models, model_names=[], accuracy_results=[]):

"""

Calculates NNU for all provided models

Arguments:

models −− list of pre−trained keras models

model_names −− list of strings of identifying names for models

accuracy_results −− list of floats of high−level accuracy of models

Returns:

NNU_results −− NNU metric of all models in form [(deactivated_neurons, total_neurons), ...]

"""

test_bottleneck_features = tml.get_bottleneck_features(vgg_model, test_imgs_scaled)

results = []

for i , preloaded_model in enumerate(models):

print("Testing model {}".format(i))

Get output at each layer

indexes = tml.layer_index_for_activations(preloaded_model)

model = tml.create_activations_model(preloaded_model, indexes)

get activations

layer_activations = tml.compute_activations(model,i, vgg_model, test_imgs_scaled)

Analyse per neuron if activation is ’deactivated’

deactivated, total_activations = tml.analyse_for_deactivation(layer_activations)

input_size = layer_activations [0]. shape[0]

Neuron is deactivated if the neuron is zeroed for all provided input. Therefore should equal len(input) in dict

NNU_results = tml.find_true_deactivation_results(deactivated, total_activations, input_size, results)

if not (model_names):

model_names = [str(i) for i in range(len(models))]

if not (model_names):

model_names = ["unknown" for i in range(len(models))]

print_NNU_results(NNU_results, model_names, accuracy_results)

return NNU_results

87

AS Methods

def activation_spectrum(models, model_names=[]):

"""

Visualises AS and stores graphs for all provided models

Arguments:

models −− list of pre−trained keras models

model_names −− list of strings of identifying names for models

"""

results = []

if not (model_names):

model_names = [str(i) for i in range(len(models))]

for i , preloaded_model in enumerate(models):

print("Testing model {} ... " .format(i))

Get output at each layer

layer_indexes = tml.layer_index_for_activations(preloaded_model)

model = tml.create_activations_model(preloaded_model,layer_indexes)

get activations

layer_activations = tml.compute_activations(model,i,vgg_model, test_imgs_scaled)

input_size = layer_activations [0]. shape[0]

find maxActivations

max_activations = tml.analyse_for_activation_range(layer_activations)

Plot spectrums

tml.plot_activation_spectrum(layer_activations, max_activations, separate=False, name=model_names[i])

Deactivation Deletion Methods

def deactivation_deletion(model):

"""

Given a model, identify the deactivated neurons, ’ delete ’ them from the network and

retrain model

Arguments:

model −− pretrained keras model

Return:

deac_model −− trained model with deactivated neurons removed

"""

preloaded_model = model

Get output at each layer

layer_indexes = tml.layer_index_for_activations(preloaded_model)

model = tml.create_activations_model(preloaded_model,layer_indexes)

get activations

layer_activations = tml.compute_activations(model,0,vgg_model, test_imgs_scaled)

input_size = layer_activations [0]. shape[0]

Analyse per neuron if activation is ’deactivated’

deactivated, total_activations = tml.analyse_for_deactivation(layer_activations)

Neuron is deactivated if the neuron is zeroed for all provided input. Therefore should equal len(input) in dict

88

deac_results = tml.find_true_deactivation_results(deactivated, input_size)

create masks from NNU comparison

mask1_val = np.ones((1,model.layers[1].output_shape[−1]))

mask2_val = np.ones((1,model.layers[2].output_shape[−1]))

mask3_val = np.ones((1,model.layers[3].output_shape[−1]))

masks = [mask1_val, mask2_val, mask3_val]

for r in deac_results:

_, layer , neuron = r

masks[layer][0][neuron] = 0

mask1 = K.variable(masks[0])

mask2 = K.variable(masks[1])

mask3 = K.variable(masks[2])

retrain model after ’ deleting ’ neurons from training

deac_model = tml.train_best_model_with_deleted_deactivations(vgg_model, mask1, mask2, mask3)

identify increase/decrease in performance

return deac_model

Deactivation Deletion Results

def deactivation_deletion_analysis(deac_model, source_model):

"""

Given two trained models − a source model and the source model retrained with deactivated neurons removed −

analyse and compare high−level results

Arguments:

deac_model −− pretrained keras model of source_model with deactivated neurons removed

source_model −− pretrained keras model

"""

predictions = deac_model.predict_classes(test_imgs_scaled, verbose=0)

predictions = num2class_label_transformer(predictions)

meu.display_model_performance_metrics(true_labels=test_labels, predicted_labels=predictions,

classes=list(set(test_labels)))

predictions = source_model.predict_classes(test_imgs_scaled, verbose=0)

predictions = num2class_label_transformer(predictions)

meu.display_model_performance_metrics(true_labels=test_labels, predicted_labels=predictions,

classes=list(set(test_labels)))

Deac model

meu.plot_model_roc_curve(deac_model, test_imgs_scaled,

true_labels=test_labels_enc,

class_names=[0, 1])

previously best model (original) − transfer learning with fine−tuning & image augmentation

meu.plot_model_roc_curve(source_model, test_imgs_scaled,

true_labels=test_labels_enc,

class_names=[0, 1])

89

AR Methods

def activation_range(models, model_names=[]):

"""

Visualises AR for all provided models

Arguments:

models −− list of pre−trained keras models

model_names −− list of strings of identifying names for models

"""

results = []

test_bottleneck_features = tml.get_bottleneck_features(vgg_model, test_imgs_scaled[0:99])

for i , preloaded_model in enumerate(models):

print("Testing model {}".format(i))

Get output at each layer

layer_indexes = tml.layer_index_for_activations(preloaded_model)

model = tml.create_activations_model(preloaded_model,layer_indexes)

get activations

layer_activations = tml.compute_activations(model,i,vgg_model, test_imgs_scaled)

input_size = layer_activations [0]. shape[0]

Find maximum activation

model_max_activation = tml.analyse_for_activation_range(layer_activations)

results .append(model_max_activation)

print results

print_AR_results(models, model_names, results, accuracy_results)

return results

90

Exploration Metrics Method Library
def get_bottleneck_features(model, input_imgs):

"""

Extract bottle neck features of VGG−16 to feed into target CNN

Arguments:

model −− vgg−16 model

input_imgs −− input dataset

Returns:

features −− Bottle neck features

"""

features = model.predict(input_imgs, verbose=0)

return features

#========================= Activation Analysis Methods =========================#

def layer_index_for_activations(model):

"""

Obtain the layer indexes that output activations to be used to create activations model

This will only be dense, convolution, model (vgg−16 layer) or maxpool layers.

Arguments:

model −− keras model

Returns:

indexes −− indexes of layers with activations

"""

indexes = []

for i , layer in enumerate(model.layers):

if (re .match(".∗dense|.∗conv|.∗model|.∗pool", layer .name)):

indexes.append(i)

return indexes

def create_activations_model(model,indexes):

"""

Creates the ’ activations model’, which is a keras model with outputs at every layer

that has activations , allowing visualisation of intermediate activations

Arguments:

model −− keras model

indexes −− indexes of layers with activations

Returns:

A keras Model object with outputs defined at given indexes

"""

outputs = [model.layers[i]. get_output_at(−1) for i in indexes]

return Model(inputs=model.inputs, outputs=outputs)

def compute_activations(model, i, vgg_model, test_imgs_scaled):

"""

Computes the activations of the activation model

Arguments:

model −− keras model

i −− iteration of models being analysed (useful as Model (3) requires the input to

bottle−neck features)

vgg_model −− pretrained VGG−16 model

test_imgs_scaled −− test−set scaled to be same size

Returns:

activations −− model.predict returns a list of numpy arrays for each set of activations

across all images of test−set per layer

"""

if (i == 2): # tl_cnn takes test_bottleneck_features

91

test_bottleneck_features = get_bottleneck_features(vgg_model, test_imgs_scaled)

return model.predict(test_bottleneck_features)

else :

return model.predict(test_imgs_scaled)

def analyse_for_deactivation(layer_activations):

"""

Analyses the given layer−activations for neurons that are emitting 0 for all test−images (i.e. deactivated)

Neurons are added as a ’suspect’ if for any input they emit 0 activation . True deactivation will occur if

neurons are found to have 0 for ALL inputs.

Arguments:

layer_activations −− a list of numpy arrays for each set of activations

across all images of test−set per layer

Returns:

deactivated −− A dictionary of all ’suspect’ deactivated neurons

total_activations −− the total number of neurons (or activations) in the network

"""

deactivated = {}

total_activations = 0

for layer_num, activations in enumerate(layer_activations):

for i , a in enumerate(activations):

if (a.ndim > 1):

for c in range(a.shape[−1]):

if (np.count_nonzero(a[:,:,c]) == 0):

deactivated[("cnn",layer_num,c)] = deactivated.get(("cnn",layer_num,c),0) + 1

else :

for x in np.where(a == 0)[0]:

deactivated[("dnn",layer_num,x)] = deactivated.get(("dnn",layer_num,x),0) + 1

Calculate total activations for this model

if (activations [0]. ndim > 1):

total_activations += np.product(activations.shape[−1])

else :

total_activations += activations.shape[1]

return deactivated, total_activations

def find_true_deactivation_results(deactivated, total_activations, input_size, NNU_results):

"""

Takes the ’suspected’ deactivated neurons from analyse_for_deactivation and detects which are

actually deactivated for the entire input size .

Arguments:

deactivated −− A dictionary of all ’suspect’ deactivated neurons

total_activations −− the total number of neurons (or activations) in the network

input_size −− size of input dataset

NNU_results −− list tracking all of the NNU results of all provided models

Returns:

NNU_results −− The NNU results for the given model in form [(deactivated neurons, total neurons), ...]

"""

completely_deact = []

for (k,v) in deactivated.items():

if (v == input_size):

completely_deact.append(k)

NNU_results.append((len(completely_deact), total_activations))

return NNU_results

#=================================== AS Methods ===================================#

def plot_activation_spectrum(layer_activations, max_activations, name="model"):

92

"""

Plots the activation spectrum for the given layer−activations of a certain keras model

Arguments:

layer_activations −− a list of numpy arrays for each set of activations

across all images of test−set per layer

max_activations −− the maximum activations of each given layer

name −− name of model

"""

Define figure

plt . figure (figsize =(10,10))

all_act = []

all_colors = []

Generate color map for differentiating layers

new_cmap = rand_cmap(len(layer_activations), type=’bright’, first_color_black=False, last_color_black=False, verbose=True)

Simplify data from complex numpy array activation to a flattened activation array for histogram plotting

for layer_num, activations in enumerate(layer_activations):

print("Calculating layer {} activation spectrum ... " .format(layer_num))

bins = np.arange(0, math.ceil(maxActivations[layer_num]), math.ceil(maxActivations[layer_num])/10)

a = np.amax(activations, axis=0)

if (a.ndim > 1):

a_flat = np.amax(a, axis=−1)

color = [list (np.random.random(size=3))] ∗ len(a_flat)

else :

a_flat = a

bins = np.arange(0, math.ceil(maxActivations[layer_num]), math.ceil(maxActivations[layer_num])/100)

color = list (new_cmap(layer_num))

Plot layer on frequency histogram

_ = plt.hist(a_flat, bins=bins, color=color, label=’Layer {}’.format(layer_num))

plt . title ("{} − Activation Spectrum".format(name))

plt .xlabel("Activations")

plt .ylabel("Frequency")

plt .legend()

Save plot

plt . savefig (" results /{}−AS−{}.png".format(name, datetime.datetime.now().strftime("%Y%m%d−%H%M%S")))

def train_best_model_with_deleted_deactivations(vgg_model,mask1, mask2, mask3):

"""

Method for deactivation deletion test . This model takes model (5) and retrains

given certain masks to ’delete ’ deactivated neurons

Arguments:

vgg_model −− VGG−16 model

mask1 −− Mask for removing hidden layer 1 of deactivated neurons

mask2 −− Mask for removing hidden layer 2 of deactivated neurons

mask3 −− Mask for removing hidden layer 3 of deactivated neurons

Returns:

model −− retrained model 5 with deactivated neurons ’deleted’

"""

vgg_model.trainable = True

set_trainable = False

for layer in vgg_model.layers:

if layer .name in [’block5_conv1’, ’block4_conv1’]:

set_trainable = True

if set_trainable:

93

layer . trainable = True

else :

layer . trainable = False

layers = [(layer , layer .name, layer.trainable) for layer in vgg_model.layers]

pd.DataFrame(layers, columns=[’Layer Type’, ’Layer Name’, ’Layer Trainable’])

train_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=50,

width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,

horizontal_flip=True, fill_mode=’nearest’)

val_datagen = ImageDataGenerator(rescale=1./255)

Load datasets

IMG_DIM = (150, 150)

train_files = glob.glob(’training_data/∗’)

train_imgs = [img_to_array(load_img(img, target_size=IMG_DIM)) for img in train_files]

train_imgs = np.array(train_imgs)

train_labels = [fn. split (’\\’) [1]. split (’ . ’) [0]. strip () for fn in train_files]

validation_files = glob.glob(’validation_data/∗’)

validation_imgs = [img_to_array(load_img(img, target_size=IMG_DIM)) for img in validation_files]

validation_imgs = np.array(validation_imgs)

validation_labels = [fn. split (’\\’) [1]. split (’ . ’) [0]. strip () for fn in validation_files]

Scale pixel values from 0−255 to 0−1 for optimizing learning

train_imgs_scaled = train_imgs.astype(’float32’)

validation_imgs_scaled = validation_imgs.astype(’float32’)

train_imgs_scaled /= 255

validation_imgs_scaled /= 255

print(train_imgs[0].shape)

array_to_img(train_imgs[200])

One−hot encode data and configure parameters

batch_size = 30

num_classes = 2

epochs = 30

input_shape = (150, 150, 3)

encode text category labels

from sklearn.preprocessing import LabelEncoder

Encode labels

le = LabelEncoder()

le . fit (train_labels)

train_labels_enc = le.transform(train_labels)

validation_labels_enc = le.transform(validation_labels)

Data generators

train_generator = train_datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val_generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_size=20)

Define model

model = Sequential()

model.add(vgg_model)

model.add(Lambda(lambda x: x ∗ mask1))

model.add(Dense(512, activation=’relu’, input_dim=input_shape))

model.add(Lambda(lambda x: x ∗ mask2))

model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))

model.add(Lambda(lambda x: x ∗ mask3))

model.add(Dropout(0.3))

94

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.RMSprop(lr=1e−5),

metrics=[’accuracy’])

history = model.fit_generator(train_generator, steps_per_epoch=100, epochs=100,

validation_data=val_generator, validation_steps=50,

verbose=1)

return model

#=================================== AR Methods ===================================#

def analyse_for_activation_range(layer_activations):

"""

Analyses each layer’s activations to determine the maximum activation per layer

and hence determine activation range

Arguments:

layer_activations −− a list of numpy arrays for each set of activations

across all images of test−set per layer

Returns:

max_activations −− the maximum activations of each given layer

"""

max_activation = []

for layer_num, activations in enumerate(layer_activations):

currLayerMax = 0

for i , a in enumerate(activations):

tempMax = np.amax(a)

if (currLayerMax < tempMax):

currLayerMax = tempMax

max_activation.append(currLayerMax)

return max_activation

def rand_cmap(nlabels, type=’bright’, first_color_black=True, last_color_black=False, verbose=True):

"""

Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks

Found at: http://stackoverflow.com/questions/14720331/how−to−generate−random−colors−in−matplotlib

:param nlabels: Number of labels (size of colormap)

:param type: ’bright’ for strong colors , ’ soft ’ for pastel colors

:param first_color_black: Option to use first color as black, True or False

:param last_color_black: Option to use last color as black, True or False

:param verbose: Prints the number of labels and shows the colormap. True or False

:return: colormap for matplotlib

"""

from matplotlib.colors import LinearSegmentedColormap

import colorsys

import numpy as np

if type not in (’bright’ , ’ soft ’) :

print (’Please choose "bright" or " soft " for type’)

return

if verbose:

print(’Number of labels: ’ + str(nlabels))

Generate color map for bright colors, based on hsv

if type == ’bright’:

randHSVcolors = [(np.random.uniform(low=0.0, high=1),

np.random.uniform(low=0.2, high=1),

np.random.uniform(low=0.9, high=1)) for i in range(nlabels)]

95

Convert HSV list to RGB

randRGBcolors = []

for HSVcolor in randHSVcolors:

randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))

if first_color_black:

randRGBcolors[0] = [0, 0, 0]

if last_color_black:

randRGBcolors[−1] = [0, 0, 0]

random_colormap = LinearSegmentedColormap.from_list(’new_map’, randRGBcolors, N=nlabels)

Generate soft pastel colors , by limiting the RGB spectrum

if type == ’soft’:

low = 0.6

high = 0.95

randRGBcolors = [(np.random.uniform(low=low, high=high),

np.random.uniform(low=low, high=high),

np.random.uniform(low=low, high=high)) for i in range(nlabels)]

if first_color_black:

randRGBcolors[0] = [0, 0, 0]

if last_color_black:

randRGBcolors[−1] = [0, 0, 0]

random_colormap = LinearSegmentedColormap.from_list(’new_map’, randRGBcolors, N=nlabels)

return random_colormap

96

	Acknowledgements
	Abbreviations
	Contents
	Introduction
	Problem Definition
	Thesis Objectives
	Summary Of Results
	Thesis Outline

	Background
	Background Theory
	Deep Learning
	Transfer Learning

	Assessing Performance Of DL And TL Applications
	Existing Assessment Metrics
	Optimizing Performance Strategies

	Knowledge Gap In Literature
	A Brief Discussion On Changes To Thesis

	Identified Metrics
	Investigation Phase
	Motivation
	Method

	Exploration Phase
	Motivation
	Method

	Evaluation
	Investigation Phase Results
	Confusion Matrix
	Baseline Hyper-Parameter Sweep Test Results
	Transfer Learning Hyper-Parameter Sweep Test Results
	Maximum Activation Results
	'Reverse Engineering' Results
	Potential Metrics Gleaned From Tests

	Exploration Phase Results
	Accuracy Results
	Neural Network Utilization (NNU) Results
	Activation Spectrum (AS) Results
	Activation Range (AR) Results
	Unsuccessful Tests

	Conclusion
	Summary Of Solution
	Implications Of Qualitative Metrics
	Future Work

	Bibliography
	Appendix

