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A. Problem statement

The nature of deep learning (and by extension, transfer learning) is that of a ‘black-
box’, where it is unclear how to assess the performance of these applications beyond a
few standard, high-level metrics; the most prevalent being accuracy. As a result, this
inherently limits the ability to improve the system without a more detailed qualitative
perspective. There is a need to develop qualitative assessment metrics to understand
the performance of transfer learning applications. This would provide further insight
into potential errors within the application and areas of improvement, beyond what is
perceivable by high-level metrics such as accuracy.

B. Objective

To identify qualitative metrics that can be used to successfully evaluate the
performance of transfer learning applications at a finer-grade level than accuracy.
These metrics should be able to develop insight into improving the application and
qualitatively explain higher-level metrics, such as accuracy.

C. My solution

Create a TL model from scratch to identify potential metrics to investigate.

Take the identified metrics from the previous phase and explore their capacity for
providing qualitative assessment using a more sophisticated TL system built on a
high-level, robust DL Python library called Keras.

D. Contributions (at most one per line, most important first)

Metric 1: Neural Network Utilization

Metric 2: Activation Spectrum

Metric 3: Activation Range

Identified the existence of ‘deactivated neurons’ in DL and TL applications

Identified NNU trends on small-scale experiment

Developed 8 various DL models (intentionally ranging in complexity and
performance)

E. Suggestions for future work

Create relationships between defined qualitative metrics and other high-level metrics
from confusion matrix (accuracy was only confusion matrix metric explored)

Continue developing some of the unsuccessful tests, such as ‘maximally activating
features’

Investigate how the weights change before and after transfer and see if other
qualitative metrics can be gleaned.

While I may have benefited from discussion with other people, I certify that this report is entirely
my own work, except where appropriately documented acknowledgements are included.
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Abstract

Advancements in machine learning and artificial intelligence continue to make new strides
at an incredible pace, including the recent exploration of transfer learning; which at a basic
premise promotes high-level, robust, learned features being shared across other features
and tasks. This innovation allows applications with smaller datasets to produce significant
results. However, the nature of deep learning (and by extension, transfer learning) is that
of a ‘black-box’, where it is unclear how to assess the performance of these applications
beyond a few standardised, high-level metrics; the most prevalent being accuracy. As a
result, this inherently limits the ability to improve the system without a more detailed,
qualitative perspective. This thesis develops qualitative assessment metrics to understand
the performance of transfer learning applications. The three metrics developed stem from
analysis at the activation level within neural networks. These metrics provide further
insight into potential errors within the application and areas of improvement, beyond

what is perceivable by high-level metrics such as accuracy.
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ANN Artificial Neural Network
AR Activation Range

AS Activation Spectrum

CM Confusion Matrix

CNN Convolutional Neural Network
DL Deep Learning

DNN Deep Neural Network

FC Fully Connected Layers
LSTM Long Short Term Memory
ML Machine Learning
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NLP Natural Language Processing
NNU Neural Network Utilization
ReLU Rectified Linear Unit

RNN Recurrent Neural Network
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Chapter 1

Introduction

Advancements in machine learning and artificial intelligence continue to make new strides
at an incredible pace, including the recent exploration of transfer learning (TL); which
at a basic premise promotes high-level, robust, learned features being shared across other
features and tasks. This innovation allows applications with smaller datasets to produce

significant results.

1.1 Problem Definition

The nature of deep learning (and by extension, transfer learning) is that of a ‘black-
box’, where it is unclear how to assess the performance of these applications beyond a
few standard, high-level metrics; the most prevalent being accuracy. As a result, this
inherently limits the ability to improve the system without a more detailed qualitative

perspective.

There is a need to develop qualitative assessment metrics to understand the
performance of transfer learning applications. This would provide further insight into
potential errors within the application and areas of improvement, beyond what is per-

ceivable by high-level metrics such as accuracy.



1.2 Thesis Objectives

The objective of this thesis is to identify qualitative metrics that can be used to success-
fully evaluate the performance of transfer learning applications at a finer-grade level than
accuracy. These metrics should be able to develop insight into improving the application

and qualitatively explain higher-level metrics, such as accuracy.

1.3 Summary Of Results

Three qualitative metrics were identified; Neural Network Utilization (NNU), Activation
Spectrum (AS), and Activation Range (AR). Each of these metrics emerged from analysis

at the activation level within a variety of different models.

NNU refers to the percentage of deactivated neurons within a network, alluding
to the degree of utilization within the network. Results imply reducing NNU increases
performance, which is the intuitive reaction to maximizing utilization of a network. Qual-
itatively, a model with high NNU can be improved by reassessing regularization methods

and improving data quantity, such as by utilizing data augmentation techniques.

AS is a visualisation of the activations across the entire network in a frequency
histogram. Results reinforce the implications of NNU, as well as discovering superior
models depict right-skewed distributions. A model producing a poor AS could be im-
proved by minimising NNU, followed by re-evaluating the activation function, weight

distribution and using regularization methods such as L2.

AR is a visualisation of the maximum activations of individual layers within
the network. Results imply consistent maximum activations between layers correlate to
improved results. Similarly to AS, reassessing weight distribution and using regularization

methods such as L2 could improve AR.

These metrics could be used as a foundational step in removing the ’black-box’

nature of deep neural networks, highlighting their significance to the current research.



1.4 Thesis Outline

The thesis is divided into four chapters (excluding this chapter):

e Chapter 2 gives a greater context to the subject matter and concepts, providing the
background theory to understand the problem. It contains the current literature,
predominantly surrounding transfer learning applications, and highlights the lack

of expression of qualitative results.

e Chapter 3 provides the methodology behind developing potential qualitative met-
rics. The solution was defined through two phases; an investigation phase and an
exploration phase. The first phase investigates potential metrics using a small-scale
TL system developed from scratch. The second phase takes the identified metrics
from the previous phase and explores their capacity for providing qualitative as-
sessment using a more sophisticated TL system built on a high-level, robust DL

Python library called Keras.

e Chapter 4 evaluates and discusses the results found in chapter 3. This chapter pro-
vides the implications of the metrics to the broader research, particularly highlight-
ing the qualitative nature of the metrics that help provide insight into improving

TL systems.

e Chapter 5 provides conclusions to the thesis; what has and has not been achieved.

It also highlights where future research could be conducted.



Chapter 2

Background

2.1 Background Theory

2.1.1 Deep Learning

Deep learning (DL) is defined as a class of machine learning (ML) techniques that exploit
many layers of non-linear information processing for supervised or unsupervised feature
extraction and transformation, and pattern analysis and classification. The main dif-
ferential of DL to traditional ML is the multiple levels (or layers) of representation and
abstraction, which translates to superior performance as data quantity increases (see fig-

ure 2.1). This advent has begun impacting a wide range of research domains since 2006
[6]-
Deep Neural Networks

Medium Neural Networks

Shallow Neural Networks

Performance

Traditional Machine Learning

Data

Figure 2.1: Advantage of DL over ML and NN [3].



Deep Neural Networks

A deep neural network (DNN) is the archetypal DL framework that is inspired by the
neural networks of the human brain to learn, recognise and classify patterns. They are
modelled as multilayer perceptrons (MLP) or "fully connected layers" (FCs), containing
an input layer, several hidden layers, and an output layer (see figure 2.2). They are
feed-forward systems, where the units in one layer are connected unidirectionally to the
following layers to perform non-linear transformations to the input data [26]. A DNN’s
performance is traditionally assessed on its accuracy of classification, generally on a test

dataset not used in training.

. hidden layer 1 hidden layer 2 hidden layer 3
input layer
Yy

output layer

KRR X,

p—y

Figure 2.2: MLP model of a 4-layer DNN [20].

Modelling An L-layer DNN

In an L-layer DNN, each hidden unit, j, in layer, [, has an activation function (see
activation functions), such as the sigmoid or logistic function seen in equation 2.1, to
map its total input, x;, from the layer below, [ +1, to the scalar state, y;. It is then

connected to all the hidden units of the layer above, [ — 1, to repeat the activation process.

1

y; = sigmoid(xj) = 5o

a:jzbj—l—Zyiwi (2.1)
i

where b; is the bias of unit j, ¢ is an index over units in the layer below, and w;; is the

weight on a connection to unit j from unit ¢ in the layer below. [12]



(Classification occurs at the output layer, L, by calculating the class probability,

pj, using the 'softmax’ non-linearity:

e%i

et

Pj = softmaxs(xj) (2.2)

where k is an index over all classes.

The DNN can then be discriminatively trained by calculating the discrepancy
between the target outputs and the actual outputs produced for each training case and
make slight adjustments within the system’s parameters as it backpropagates through
the layers; accomplished by using a cost function between the desired probabilities, d;,

and the outputs of the softmax, p;, seen in equation 2.3.

C'=—=>_djlogp; (2:3)
j

Convolutional Neural Networks

The Convolutional Neural Network (CNN) is the predominant DL architecture utilized in
the current research, as it has found particular success in image recognition [10, 15, 23, 41],
and recently other domains, such as natural language processing (NLP) [9, 39] and speech
[1]. The premise of a CNN is the extraction of convolved features, or ’feature maps’,
which are created by passing a filter matrix or 'kernel’ over the input and producing a

dot product of the resultant multiplications (see figure 2.3).

1/1(1|0|0
111111919 0|1{1|1|0 434
0/1|1/1|0D
IERRE olofyf1l1] [2]4]3
seinls o+ ot [oolaalel [[3[e
0 1 1'-1 0:0 0!1
5 x 5 - Image Matrix 3 x 3 - Filter Matrix | COHVOlVEd
mage Feature

Figure 2.3: CNN feature map convolution [37].
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There are additional variables as to how this feature map is created by the
convolution of the filter matrix over the input matrix. Stride dictates how many pixels
the filter matrix slides over the input matrix after each multiplication. Padding allows
the input matrix to be padded with zeroes around the border to apply filters to the
bordering elements (which is called wide convolution). Depth corresponds to the number

of filters used for the convolution operation.

After each convolution operation, the feature maps are passed through an activa-
tion function, usually a Rectified Linear Unit (ReLU) function (see activation functions).
This parallels the activation of the neurons in the DNN through the sigmoid function in

equation 2.1.

Pooling (or subsampling in figure 2.4) is used after convolutional layers to
reduce the dimensionality of each feature map while retaining the important information.
Pooling summarises the feature map data, depending on the type of pooling desired, such
as max, average [41], sum etc. In the case of Maz Pooling, which is the most common
23, 31, 39], a spatial neighbourhood is defined (such as a 2 x 2 window) and the largest
element of that window is maintained in the reduced matrix. Different pooling techniques
have different effects but are generally used to reduce the number of parameters and

computations, therefore controlling overfitting.

Finally, the last convolution layer feeds into a traditional MLP or FC layer (or
layers), followed by a softmax function, similar to 2.1.1. These are added to the end of
CNNs to utilise their functionality for classification [10, 31]. Figure 2.4 summarises the

typical CNN structure.

Feature maps

______ .
*,. Output
\"P

Convolutions Subsampling Convolutions Subsampling  Fully connected

Figure 2.4: Typical CNN model structure [31].
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Activation Functions
The three main activation functions that are commonly used are tanh, sigmoid and RelLU

(see figure 2.5).

1 1 —
/ /
E / | |
f 05, /
/
/ 5

2 2 =
(1]
/‘ 10 0 10
(a) Tanh Activation (b) Sigmoid Activation (c) ReLU Activation
y = tanh(z) Y= 1+6171j y =maxz(0,z)

Figure 2.5: Three main activation functions.

The ReLU is the most commonly used activation function for intermediate ac-
tivations as it is the least computationally expensive [7, 31, 33, 41]. Sigmoids tend to be

used at the output layer for classification. Tanh is seldom used.

Recurrent Neural Networks

There are other various architectures beside DNNs and CNNs, including Recurrent Neural
Networks (RNNs). RNNs use a sequence of inputs by looping internally rather than using
a feed-forward structure (see figure 2.6). For this reason, they are useful for complex data
that is formed in a sequence of inputs, such as speech or text. A well-known and high-
performing RNN is the Long Short Term Memory (LSTM) network, which is an RNN

which specialises in learning long-term dependencies [22].

vo1s
e - :

S o

Figure 2.6: An "unrolled’ cycle within an RNN [22].
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2.1.2 Transfer Learning

Definition Of Transfer Learning

Transfer learning (TL) is a machine learning technique which Andrew Ng in his NIPS16
tutorial remarked is 'a future key driver of machine learning success’ (see figure 2.7)[18].
Transfer learning involves all methods that utilize any auxiliary resources (data, model,
labels, etc.) to enhance model learning for the target task [38]. This can be understood
by a human’s ability to retain and reuse previously learned knowledge in related, but

different tasks, such as a classical pianist learning jazz piano [2, 31].

Drivers of ML success in industry

Supervised learning

 Transfer learning

Commercial
success

Unsupervised learning

- Andrew Ng, NIPS 2016 tutorial

Figure 2.7: Drivers of ML industrial success according to Andrew Ng [28].

Transfer Learning Performance Over Traditional Machine Learning
Assessing the effectiveness of transfer learning performance over traditional machine
learning techniques is generally summarized in three high-level ways [32]:

1. higher start - indicating improved performance at the initial points.
2. higher slope - showing more rapid growth of performance.

3. higher asymptote - leading to an improved final performance.

As shown in figure 2.8, these above reasons are indicative of the advantage of
new tasks relying on previously learned tasks, instead of in isolation. Traditional ML
uses single-task learning, where knowledge is not retained or accumulated, whereas the
knowledge accumulated in TL allows the learning process to be faster, more accurate and

needing less training data to achieve success.

13



\ Leamning ,/ \ Learning

(  Dataset1 | =| system | aset1 = system

\ / Task 1 \ / Task 1
Enuw\edg;j
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Figure 2.8: Traditional ML (left) vs. Transfer Learning (right) [31].

Relationship of Transfer Learning And Deep Learning

The paradigmatic shift brought on by deep learning changed everything, including trans-
fer learning. A major component of this impact, as mentioned in subsection 2.1.1, was
the strong modelling power via a multi-level hierarchy. This provided several advantages,
including the ability to learn high-level features, hierarchical parameter sharing, simple
feature learning without any labelled data, and learned models can be well adapted to

specific tasks with little supervised training.

For these reasons, deep learning provides a graceful framework for transfer learn-
ing, launching off the major research direction depicted in the NIPS95 workshop, "Learn-
ing to Learn" [4, 38], with high-level, robust, previously-learned features being shared

across other features and tasks.

Transfer learning methods
Many different methods emerged with transfer learning and can be differentiated into four
categories of applications, where data (or feature domain) and task are two conditional

factors:

Same Tasks Different Tasks

Model adaptation, incremental learning,

model transfor Multitask learning

Same Domains

Co-training, heterogeneous transfer learning,

generalized distillation Analogy learning

Different Domains

Table 2.1: Categories of transfer learning methods.
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Table 2.1 refers to several transfer learning methods, but is not exhaustive; there
are a large number of methods devised by many authors [7, 10, 29, 40]. Appropriate
methods are expressions of transfer learning being applied under specific contexts, hence
these methods are driven by the previously mentioned conditional factors of data and task.
To illustrate these differences, two different transfer learning methods will be explored

below.

Model Adaptation This is considered the simplest and most common method, where
the source and target share the same domains, but the model is adapted to meet a
change of data distribution. One example is a DNN model completely trained with data
from a high resource, such as adult English speech, and has its last layer adapted to
the target condition or data with significantly fewer resources, such as dysarthric speech
[35]; domains share enough feature similarities to provide substantial results using model
adaptation. With the internal weights regularized by the high resource learning, this

information can be retained and reused powerfully for the low-resource domain.

Figure 2.9 shows this technique practically with the higher resource domain
network being used as a pre-trained feature extractor for the lower resource domain
network. The layers of the pre-trained feature extractor are either frozen or finely-tuned
when training with the target data. Finely-tuned layers tend to produce better performing

results [10, 15].

loss > 1
f Shallow classifier (e.g. SVM)
- [ features
x fc2
fe1 fel
{ conv3 I conv3 ‘
[ conv2 | TRANSFER conv2 \

I convi ‘
[]

[ COI:W‘I ;

| Data and labels (e.g. ImageNet) | Target data and labels

Figure 2.9: Model adaptation shown using a pre-trained model as a feature extractor,
adapted into another domain with a shallow classifier [31].
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Multitask Learning Multitask Learning utilises the similar feature spaces of the source

and target domains, but where the task labels are significantly different. This is a popular

method for cross-lingual applications [8, 11, 13]. The target and source share learning

across a single level of the network; sharing feature extraction, sharing hidden layers, but

having the softmax layer task-dependent (see figure 2.10) [2].

=)
~

Dy

Input Domains

8, Shared
Parameters

——
Task Specific

Parameters

Figure 2.10: Example model of multitask learning [24].

2.2 Assessing Performance Of DL And TL

Applications

2.2.1 Existing Assessment Metrics

Confusion Matrix Metrics

The majority of all standardised metrics used to assess both DL and TL applications

stem from the Confusion Matrix (see table 2.2).

Positive Predicted

Negative Predicted

Positive Actual

True Positive (TP)

False Negative (FN)

Negative Actual

False Positive (FP)

True Negative (TN)

Table 2.2: Confusion Matrix

16



From these values, several standardised, high-level metrics can be calculated.

Accuracy is the most common metric used in all applications for assessing
performance. It is very high-level and provides little insight as to where the issues lie

within systems.
TP+TN

TP+TN+FP+FN

(2.4)

Accuracy =

Recall is the ratio of correctly classified positive examples to the total positive

examples. High recall indicates the class is correctly recognized.

TP
RGC(I” = m (25)

Precision is the ratio of correctly classified positive examples to the total pos-

itive predictions.

TP
Precision = ———— 2.
recision = o p (2.6)

F1 Score conveys the balance between precision and recall.

71 Seore — 2.Precision.Recall 2.7)

Precision+ Recall

These metrics and more (Cohen’s Kappa, misclassification rate, null error rate
etc.) all use various combinations of the confusion matrix to create high-level insight into
a system’s classification ability. However, none of them provides a substantial qualitative

understanding of how the system reached these values.

The majority of the literature compares a TL application’s performance to a
traditional DL baseline model to show performance improvement, as accuracy typically
will improve. There is a need for additional metrics to provide finer-grade insight into the
performance of TL applications beyond what is available from these high-level metrics.

This is outlined in section 2.3.

17



2.2.2 Optimizing Performance Strategies

Regularization
Regularization provides additional efficiency and superior results, particularly as it re-
duces overfitting. Two common regularization techniques are L2 regularization and

dropout.

L2 relies on the assumption that a network is simpler with smaller weights. Thus, it
modifies the cost function by adding an additional term, penalizing the square values of

weights, driving weights to be smaller [16, 19]. This is shown in equation 2.8 below.

1 m R . )\ L
Jregulam'zed = _E Zl E(y 2_ Z (28)
1= =1

Figure 2.11: L2 regularization where a second term (with \) is added to the cost
function [19].

Dropout will randomly eliminate neurons at a specified probability, setting that neuron
to 0 for that iteration, allowing the network to operate on a subset of itself during
training (see figure 2.12). This promotes the network to not rely too heavily on any
individual neuron. This is a common method employed to improve performance by

reducing overfitting (see figure 2.13) in related works [21, 33, 41]).

X1 N ’,/O\ R ®

Figure 2.12: Dropout regularization visualization [19].

Model without regularization Model with regularization Model with dropout

Figure 2.13: Difference between no regularization (left), L2 regularization (centre), and
dropout (right) in reducing overfitting [19].

18



Optimization Algorithms

Optimization algorithms are used to minimize the cost or loss produced by the cost func-
tion (see equation 2.3 for an example cost function) that will lead to optimal solutions
faster and produce better-performing systems (see figure 2.14). The three common opti-
mization algorithms are gradient descent with momentum, root mean square propagation

(RMSprop), and the Adam optimization algorithm.

Gradient descent with momentum computes an exponentially weighted average of
the gradients which is then used to adjust weights. This, in turn, produces more direct
steps towards the local minima as vertical oscillations are reduced by using exponentially

weighted averages [7].

RMSprop utilizes a similar idea as momentum but uses division by the root mean
square of the derivatives, in hopes to maximise learning speed in the horizontal plane

and minimise vertical oscillations [31].

Adam combines both momentum and RMSprop to obtain the benefits of both. The

Adam algorithm is most commonly used [23, 31, 33].

Learning rate = 0.0007 Learning rate = 0.0007 Learning rate = 0.0007

st
st
o

80 100 0 20 a0 60 80 100

0 0 40 0
epochs (per 100) epochs (per 100}

Ey 0 80 100 [ 20
‘epochs (per 100)

(a) Learning curve using (b) Learning curve using (c) Learning curve using
gradient descent. momentum. Adam.

Model with Gradient Descent optimization Model with Momentum optimization Model with Adam optimization

15

10

15 -10 -05 00 05 10 15 20 25 s 10 05 00 05 10 15 20 25 s 10 05 0o 05 10 15 20 25
al 1 x1

(d) Classification using (e) Classification using (f) Classification using
gradient descent. momentum. Adam.

Figure 2.14: Comparison of optimization algorithms [19].
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Data Augmentation

Data augmentation is a technique used to create additional, varied data samples from an
existing dataset. This is a vital strategy for improving application performance for low
resource systems, as these systems have difficulty generalising validation and test sets.

The main techniques fall under the two categories of data warping and oversampling.

Data warping directly augments the input data to the model in the data
space while maintaining the target label [33]. Many applications incorporate warping
with geometric and colour transformations (see figure 2.15a), random erasing, adversarial

training, and neural style transfer [15, 23, 41].

Oversampling techniques create synthetic instances and add them to the train-
ing set. This includes mixing images, feature space augmentations, and generative ad-

versarial networks (see figure 2.15b) [23, 42].

(a) Data warping example used in section 3.2 utilizing geometric transformations.

Input Bi ) CoGAN feature loss GAN SunGAN

(b) Oversampling example using generative adversarial networks (GANs) [42].

Figure 2.15: Data augmentation examples.



The two categories do not form a mutually exclusive dichotomy and are represented in

Image Data
Augmentation

the taxonomy in figure 2.16.

Basic Image Deep Learning
Manipulations Approaches

. Color Space
v
) 4
Random Erasing
; . - GAN Data
Geometric i Adversarial Training Neural Style Transfer N
Mlxmg Images [ AuQmema"on

Meta Learning

p Y
[Neural Augmentation] [ AutoAugment } [SmanAugmenlation}

Figure 2.16: Taxonomy of image data augmentation techniques [33].

Data Quality And Quantity

The reason TL and data augmentation are successful in improving the performance of
applications is the intuitive understanding of increasing data quantity generally increases
the performance of DL applications. However, the quality of data is an important con-
tributor to an application’s ability to generalize in its classification. This is perhaps the
greatest challenge in Big Data and DL [17]. Therefore, by building more substantial and

higher-quality datasets, applications can be further optimized.
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2.3 Knowledge Gap In Literature

As mentioned in the introduction, the large majority of related works assess performance
by high-level metrics; almost always accuracy [10, 23, 41]. Since successful classification
is the main objective with many applications, accuracy is the most logical metric to
use when assessing if the application has achieved its purpose. However, this lacks the
qualitative insight into the reasons behind an application’s success (or failures), providing

little direction of how to improve performance (see figure 2.17).
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Figure 2.17: Typical example of a TL application using a comparison of accuracies
between competing models to assess performance in classifying emotion[10].

Many papers comment on the "black-box’ nature of neural networks and some
postulate ways of understanding the internals qualitatively by visualizing the internal
activations (see figures 2.18 and 2.19) [15, 30]. These methods tend to reach conclusions
that earlier layers show patterns of feature recognition whereas deeper layers tended to
present no clear indications of trends. However, these methods do not develop specific

metrics that can be employed to assess these relationships.
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Figure 2.18: Example of seeking qualitative understanding of ’black-box’ neural network
by seeing maximized activations of internal layers [15].
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Figure 2.19: Example of seeking qualitative understanding of ’black-box’ neural network
by using heatmaps [30].
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2.4 A Brief Discussion On Changes To Thesis

It should be noted that the thesis’ problem statement, objectives, and therefore, method-
ologies have all shifted since trimester one. In trimester one, a similar goal was established
in identifying a qualitative understanding of TL, however, under the specific domain of
Automatic Speech Recognition (ASR) (see figure 2.20). The specific metric that was
focused on heavily was "% WER’ or Word Error Rate, which is a specific form of accuracy

within ASR applications.
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Figure 2.20: High-level view of ASR applications [36].

However, since trimester one, the thesis has developed in a more generalised
direction of identifying qualitative metrics that could be applied to any domain. In
addition to this, the various experiments of developing ASR models were beginning to be
too time-consuming and beyond the scope of the thesis, as it drew away from the focus

of qualitative assessment. Hence, the thesis has evolved away from ASR.
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Chapter 3

Identified Metrics

The qualitative assessment metrics for transfer learning were developed in two distinct

phases; investigation and exploration.

1. The investigation phase involved developing a TL model from scratch to attempt

to identify potential metrics to investigate.

2. The exploration phase involved taking the potential metrics identified in the inves-
tigation phase and evaluating them within a much more robust, extensive model.
This was accomplished by developing a model using Keras, which is a high-level DL
Python library.

This chapter will illustrate the problems to be solved in each particular phase

and the methodology to solve these problems.
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3.1 Investigation Phase

3.1.1 Motivation

Problem: A working model is required

Potential metrics can only be defined if a working model exists. Hence the first problem
to be addressed in this phase is to create a working DL application. After creating this,
a TL application will then need to be created. Finally, after a working TL application

exists, potential metrics could hypothetically be extracted via extensive experimentation.

Solution: create a working TL model from scratch

For this phase, it is significantly more advantageous to build a working TL model from
scratch, as this allows more manipulability of the model, which is crucial for this phase of
attempting to understand the ’black-box’ nature. Also, it reinforces the theoretical prin-
ciples behind DNNs by creating the methods from scratch (forward and backpropagation,

activation functions etc.), providing insight into which areas to investigate.

3.1.2 Method

Architecture

The methodology behind this phase was to create a simple model to experiment with.
Hence, more complex modelling, such as CNN, RNN and LSTM networks were all ignored
for the sake of simplicity. Instead, a 4-layer DNN was implemented, with ReLLU activation

for all layers except for the output which uses a sigmoid activation (see figure 3.1).
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Figure 3.1: Simple DNN architecture for the investigation phase [19].
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Baseline Hyper-Parameters

Hyper-Parameter Value
Input Layer 64 by 64 pixel RGB image becomes 64 %64 x 3 = 12288 neurons
Hidden Layers Three hidden layers with neurons 20, 7, 5 respectively
Output Layer 1 neuron
Learning Rate 0.0075
Cost Function Cross Entropy Criterion
Activation Function Rectified Linear (Sigmoid Output)

Table 3.1: Baseline hyper-parameters for both cat and dog classifiers. Baseline
parameter choices were modelled from Ng’s models [19].

Datasets

This model is a unary image classifier which will be used with a "high-resource’ dataset
and a ’low-resource’ dataset to perform model adaptation. Ng’s cat vs. non-cat dataset
was used as the ’high-resource’ domain for the feature extractor, and a dog vs. non-
dog dataset that was self-curated from Kaggle’s Natural Images dataset was used as the

"low-resource’ domain (see figure 3.2)[27].

Cat vs. non-cat is a curation of cats as the primary class and other objects as
the anti-class. There are 209 images in the training set, and 50 images the in testing set.
Dog vs. non-dog is identical to the cat dataset, but with a dog as the primary class and

much fewer resources with 62 images in the training set, and 30 images in the testing set.

Small datasets were utilised to reduce computational costs as a tradeoff to clas-
sification accuracy, as high accuracy was not a priority of this phase of the thesis. Image

classification was chosen as the domain space as there are substantial resources for de-

velopment and many examples of successful TL in the literature [10, 15, 23, 31, 41].

-
"’H Z
| —l—
Py

m

Figure 3.2: Three samples from dog dataset.
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Hyper-Parameter Sweep Tests

Four hyperparameter sweep tests were developed to assess models under structural vari-
ation. These sweeps were done in anticipation that trends would reveal themselves that
would ideally forge the potential qualitative metrics. The first sweep test is a learning
rate sweep of 50 rates in the range of [1074,1) across a logarithmic distribution (as best
results tend to emerge exponentially towards zero). The other three sweep tests were
for the three hidden layers, sweeping across a variable number of neurons per layer, with
each sweep ranging from 1 to 50 neurons. In total, a model would be trained on 200

different sets of hyper-parameters and produced 200 sets of results per dataset.

Transfer Learning Technique

Model adaptation is used to take the cat classifier (domain with more resources) as the
feature extractor and transferred to a dog classifier (domain with fewer resources) as
shown in figure 3.3; see section chapter 2 for theory. The significant similarity between
dogs and cats provides a substantial problem space to explore transfer learning using this

method.
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Figure 3.3: TL method for the investigation phase.

(Cat dataset)
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The cat classifier is trained to maximum accuracy using the baseline hyperpa-
rameters in table 3.1. The output layer is removed and fed into the first hidden layer of
the dog classifier, which uses the same baseline parameters in table 3.1, effectively achiev-
ing model adaptation. This model is then fed through the hyper-parameter sweep tests
explained previously, allowing qualitative comparisons between sweep results of different

models; particularly the baseline cat, baseline dog, and TL model.

The final variation to the model adaptation are various permutations of layers
are frozen and then run through the sweep tests to see how freezing particular layers of

the target domain (dog classifier) responded to the sweep tests.

Specific Investigative Metric Tests

In addition to the sweep tests for investigation, the following are specific tests developed

for drawing out potential metrics.

The first specific test is maximum activation, which determines the input image
that produces the maximum activation for any given neuron. This test was developed
to show a correlation between some neurons being considered ’'cat-neurons’ and others

being 'non-cat neurons’, similar to work done by Kensert et al. [15].

Another test was to analyse particular neuron’s activation variations across
training in response to specific inputs. This effectively 'reverse engineers’ the DNN as
the internals are being analysed in response to a known output. This attempted to find

qualitative metrics from activation trends.
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3.2 Exploration Phase

3.2.1 Motivation

Problem: Potential metrics need to be solidified
The results of the investigation phase developed several potential metrics to explore,
but the nature of the experiment produced results that were inconclusive due to the

small-scale experimentation.

Solution: Create a large-scale experiment

Hence, by leveraging high-level DL Python libraries, such as Keras, highly optimized and
powerful TL models can be developed and used with large datasets. Using these models,
the identified potential metrics can be substantially explored, thereby understanding their
implications for improving applications. The basis for this experiment is found in Sarkar’s

work on TL [31].

3.2.2 Method

Macro-structure Models Architecture Overview

Five models are created, each increasing with complexity from the previous to ideally
increase in performance (i.e. accuracy). Table 3.2 outlines the high-level description
of each model and figures 3.4 and 3.5 show the architectural schematics. The specific
structural differences of each are outlined in greater detail in "Model Parameters’. The
five models are referred to as 'macro-structure models’ or 'macro-models’ as each model
has a significant structural difference to each predecessor (denoted as models 1, 2, 3, 4

and 5). The models were based off Sarkar’s work [31].
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Model 1

Simple CNN model, with three convolutional layers and max-pooling for
automatic-extraction of features from images. This model has no regular-
ization. See figure 3.4 for the overall architecture.

Model 2

The same simple CNN model as model 1, but model utilises image augmen-
tation via geometric transformations to reduce overfitting. This model also
uses regularization via dropout. See chapter 2 for more details on image
augmentation and regularization. See figure 3.4 for the overall architecture.

Model 3

This model uses TL by leveraging a pre-trained CNN model as a feature
extractor into a shallow fully-connected classifier (see model adaptation).
The pre-trained model is outlined in the VGG-16 section below. All layers
within the pre-trained model are frozen. This model uses dropout. See
figure 3.5 for the overall architecture.

Model 4

The same TL model as model 3, but this model utilises image augmenta-
tion. See figure 3.5 for the overall architecture.

Model 5

The same TL model as model 4, but this model finely-tunes the weights of
the feature-extractor instead of freezmg them. See figure 3.5 for the overall
architecture.

Table 3.2: Macro-structure models which increase in complexity.
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Figure 3.4: Models 1 and 2 architecture schematic.
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Figure 3.5: Models 3, 4 and 5 architecture schematic.
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Micro-structure Models Architecture Overview

Upon creating these five models with macro-structural changes, the best of these models,
model 5, was taken and altered to create micro-structural changes (denoted as models
5a, bb, 5¢). Table 3.3 outlines the high-level descriptions of the micro-structural changes

and figures 3.6 and 3.7 show the architectural schematics.

Model 5a | This model altered the number of neurons per layer in the shallow FC
classifier. See figure 3.6 for the overall architecture.

Model 5b | This model added an additional FC layer to the shallow FC classifier.
See figure 3.7 for the overall architecture.

Model 5c¢ | This model altered the learning rate of training. See figure 3.5 for the
overall architecture.

Table 3.3: Micro-structure models.
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Figure 3.6: Model 5a architecture schematic.
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Figure 3.7: Model 5b architecture schematic.
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VGG-16 - Pre-trained Feature Extractor

The VGG-16 model is a 16-layer (convolution and fully connected) network built on the
ImageNet database [5]. It is a state-of-the-art system that relies on conventional CNN
architecture with substantially increased depth. The system was trained for 1000 different
classes, using 1.3 million images for training which took approximately three weeks on
a high-performance system for training a single network [34]. It is generalised for a
wide range of tasks and datasets, which makes it an ideal candidate for a fully-realised

pre-trained feature extractor for dogs and cats. See figure 3.8 for architecture.

4
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VGG-16 Model Architecture
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convl 2 conv2_ 2  conv3_3 conv4_3 conv5_3 softmax

Figure 3.8: VGG-16 Model Architecture [31].

Model Parameters

The code for creating all models and detailed model summaries outlining specific layer

properties can be found in Appendix 3.

The following tables outline the parameter and structural choices behind each
model for the macro-structure tests. Hyper-parameters such as learning rate vary from
model to model. This was experimented by trial-and-error to achieve certain accuracy
thresholds, which is suitable when choosing hyper-parameters [19]. The same optimizer,
cost function and activation functions were used across all models, seen in table 3.4.

Hyper-parameter choice was modelled from Sarkar’s work [31].
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Component

Value

Optimizer

RMSprop

Cost Function

Cross Entropy Criterion

Activation Function

Rectified Linear (Sigmoid Output)

Table 3.4: Common design decisions across all models

Component Value
Learning Rate 0.001
Image Augmentation No

Table 3.5: Model 1 Parameters - Simple CNN

Component

Value

Learning Rate

0.0001

Regularization

Dropout of 0.3 for FC layers

Image Augmentation

Yes

Table 3.6: Model 2 Parameters - Simple CNN with image augmentation and

regularization

Component

Value

Learning Rate

0.00001

Regularization Dropout of 0.3 for FC layers
Image Augmentation No
Transfer Learning Layers Frozen

Table 3.7: Model 3 Parameters - TL using VGG-16

Component

Value

Learning Rate

0.00002

Regularization Dropout of 0.3 for FC layers
Image Augmentation Yes
Transfer Learning Layers Frozen

Table 3.8: Model 4 Parameters - TL using VGG-16 and image augmentation
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Component Value
Learning Rate 0.00001
Regularization Dropout of 0.3 for FC layers

Image Augmentation Yes
Transfer Learning Layers Fine-tune

Table 3.9: Model 5 Parameters - TL using VGG-16, image augmentation and fine-tuning

Altered Component Value

Number of Neurons FC1 and FC2 changed to 600 and 400 neurons respectively

Table 3.10: Model ba Parameters - Alter model 5 neurons per FC layer

Altered Component Value

Number of FC Layers Two (1 x 512) FC layers changed to three (1x512) layers

Table 3.11: Model 5b Parameters - Alter model 5 number of FC layers

Altered Component Value

Learning rate 0.00001 changed to 0.00005

Table 3.12: Model 5¢ Parameters - Alter model 5 learning rate.
Domain
Similar to the investigation phase domain, the famous Dogs vs. Cat dataset is used
[14]. The Kaggle dataset contains 25,000 images of dogs and cats (12,500 per class) for a
binary image classification application. A subset of these images was curated for training,

validating and testing the models to replicate TL conditions of minimal resources, shown

in table 3.13 below.

Training Validation Testing

3000 1000 1000

Table 3.13: Subset of Dogs vs. Cats dataset used for models, each set equally
represented by both classes.

The VGG-16 feature extractor was trained on the ImageNet dataset, which is
an extremely large visual database, containing over 14 million hand-annotated images,

with over 20,000 classes [5]. This makes the VGG-16 model an ideal candidate as the

"high-resource’ domain for model adaptation.
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Neural Network Utilization Test

The inception of Neural Network Utilization (NNU) is found in j.1.5.

Utilizing the powerful modelling capability of Keras, a model object with a
variable number of outputs can be instantiated, such that the predict method in the
Keras library can return the activations of a custom selection of individual layers of the
trained model as numpy arrays in response to the test dataset. To obtain the correct
layers for activation analysis for any given model, a sweep is done through the individual
layers to identify which should be set as output layers to capture activations. These layers

include all dense, convolution, max pool and 'model’ (the VGG-16 layer flattened) layers.

The resultant numpy array contains the layer activations which can then be
taken and analysed for deactivated neurons. A deactivated neuron is defined as a neu-
ron (or for convolutional layers, a feature map) with activations of 0 for the entire test
dataset. Therefore, using nested for loops of time complexity O(a), where a is the number
of activations, the total number of deactivated neurons, 1, can be found. This is compu-
tationally expensive as some activations exceed 9 x 109, therefore code optimization is a

potential area for improvement. The code can be found in Appendix 3.

Once the deactivated neurons were identified, finding NNU for the given model

can be found using equation 3.1:

0

NNU =
Total Activations

, where ¥ is deactivated neurons (3.1)
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Activation Spectrum Test

A similar process as the NNU test can be done to identify the Activation Spectrum (AS).
Once the layer activations have been predicted, the numpy array results can be printed
sequentially, layer by layer, as frequency histograms to create a model’s AS using the
popular Python graphing library, matplotlib (see figure 3.9). The AS of a model is scaled
by the maximum activation of the model, hence code is reused for the Activation Range.

The code can be found in Appendix 3.

img_aug_cnn - Activation Spectrum

140 Layer O
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8

Layer 9
Layer 10

120

100

Frequency
Q c©
=] =]

S
[=]

N
[=]

0 i
0 1 2 3 4
Activations

Figure 3.9: Example activation spectrum.

Activation Range Test

A similar process as the NNU test can be done to identify the Activation Range (AR). As
the activations are looped through, the maximum activation per layer is tracked instead
of deactivated neurons. The maximum activation of each layer is then plotted as a set of
bar graphs on a single plane using matplotlib (see figure 3.10). The code can be found in

Appendix 3.

Activation Range Comparison

70| WM tl_img_aug_finetune_cnn
B tl_img_aug_ft_cnn_alter_neurons
Bl tl_img_aug_ft_cnn_add_layer

Activation

Models' Layer Activations

Figure 3.10: Example activation range.
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Chapter 4

Evaluation

This chapter evaluates the results from both the investigation phase and the exploration

phase.

4.1 Investigation Phase Results

4.1.1 Confusion Matrix

As mentioned in the DNN background section, the standard convention for assessing
DNN, and TL applications by extension, are the high-level metrics composed from ele-
ments of the confusion matrix (CM). Hence, it is important to develop these high-level,
standard metrics for the system to both follow best practices, and also use the qualitative

metrics to provide additional perspective to the values of the standard metrics.
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Metrics Value
Accuracy 0.8
Misclassification Rate 0.2
True Positive Rate 0.848
False Positive Rate 0.294
True Negative Rate 0.706
Precision 0.848
Prevalence 0.66
Null Error Rate 0.34
Cohen’s Kappa 0.554
F1-Score 0.848

Table 4.1: Confusion matrix (CM) metrics for the baseline cat classifier model.

The definitions of these metrics can be found in chapter 2.2.1. The main high-level metric

that will be focused on is accuracy.

4.1.2 Baseline Hyper-Parameter Sweep Test Results

The hyper-parameter sweep tests were initially run on the baseline model for the cat
dataset. These sweep tests created 400 different sets of results for predictions for the
training and test sets (200 results each). As a starting point, the confusion matrix
metrics for each sweep test were graphed to visualise patterns or trends. An example of
this visualisation is shown in figure 4.1 for accuracy across the test dataset. A visualisation
set for each of the metrics in table 4.1 was created. Therefore, for the ten CM metrics,
four sweep tests, and both training and test datasets, 80 graphs were created to visualise
potential trends for qualitative metrics. This, in turn, creates 80 visualisations of trends

for any model the sweep test is run on.
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Accuracy of baseline cat model using variable number of neurons in first hidden layer

T T — T T T T T — T T T T — T T T T — T T
02 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 3/ 40 42 4 46 48
Mumber of neurons in first hidden layer

Accuracy of baseline cat model using variable number of neurons in second hidden layer

°
0.5 L] [ ] [ ] [ ]
o LIS e, oo o o. e®® o......o.. oo.o.... °
LX) e
0.7 4 L] L]
° ®
g o6 -
g
< 054
0.4
°
03 T T T T T T T T T T T T T T T T T T T T T T T T T
o0 2 4 6 B8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 3|/ 40 4 4 46 48
Mumber of neurons in 2nd hidden layer
Accuracy of baseline cat model using variable number of neurons in third hidden layer
08 L] L]
® e _o e o ® ®
° ® (XXX} ®
or ..o ® . ® oo T T o o o s ® ® ]
o® °® ® e o °
= ° e ° ®
a
g 0.6 L]
<
0.5 4
0.4 4
®
L e e e N A e e L e e e A
o0 2 4 6 8 10 1z 14 16 20 22 24 2 28 30 32 34 3/ 3/ 40 42 M 4 48
Mumber of neurons in 3rd hidden layer
Accuracy of baseline cat model using 50 random learning rates between [0.00001, 1)
08 L] L] [
LI ° LI ° ®
° ° ° ® °
07 L] [ ] L]
g ° °
% 0.6 ®
®
= 051 ® .
®e ®
0.4 .
° e ® e o e oo ® esoee ° T ®
03 T T T T T T T T T T T T

T T — T T T T — T T T
o0 2 4 6 8 10 12 14 16 18 20 22 24 2% 28 30 32 34 36 3|/ 40 42 4 46 48
50 training runs on random learning rates between [0.00001, 1)

Figure 4.1: The four sweep tests accuracy results on the baseline cat model using the
test dataset. The red line marks the line of best fit.

4.1.3 Transfer Learning Hyper-Parameter Sweep Test Results

After applying the transfer learning technique of model adaptation, another 80 graphs
are generated displaying the trends for the TL model. In addition to this, the baseline
dog model is also run in isolation through the sweep tests. There are now visualisations

of the sweep tests for the baseline cat model, the baseline dog model, and the TL model.
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Consolidating Results To Remain In Scope

All of these graphs are generated to qualitatively compare the baseline cat model, the
baseline dog model, and the TL model, to detect if there are trends. However, there is
simply just too much data being generated to closely qualitatively compare every single
metric. For the sake of remaining in scope, the training set results were ignored, focus-
ing on the test set as this produces more valuable performance assessment results, and
accuracy was the CM metric that was closely analysed, as this was the only predominant
high-level metric that was consistently employed for performance assessment in the lit-
erature. This helps reduce the number of graphs for comparison from 80 graphs to 4 per

model (one for each sweep test).
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Figure 4.2: Comparing baseline cat, baseline dog and TL cat to dog models for
accuracy sweep test on the first hidden layer. Full set of sweep visualisations can be
found in Appendix 2
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When comparing the three models in figure 4.2, it is trivial when looking at the
lines of best fit (red lines) to see that the TL model (figure 4.2¢) improves the overall
accuracy of the dog recognizer (figure 4.2b) by utilizing the knowledge gained from the
cat recognizer (4.2a). However, these graphs in isolation do not provide much insight into
particular identifiable metrics, as there are no obvious qualitative conclusions as to why

the TL model improves in performance

4.1.4 Maximum Activation Results

Whilst analysing the sweep test accuracy results for all models under the test set, other
specific investigative evaluations were happening in parallel. The first of which was
understanding the input that produced the maximum activation for each neuron, similar

to Kensert et al. [15]. The full output of this test can be found in Appendix 2.

The idea behind this test was to reveal specific neurons being ’cat-neurons’ or
'non-cat-neurons’, similar to Rodriquez work [25]. However, the potential take away from
this test revealed that there was a consistency of maximum activation values between
layers for the most successful model; the baseline cat-classifier. This is shown in figure

4.3.

FDB neuron: 14, maxVal: [ 19.3863351] Fc&r neuron: 0, maxVal: [ 18.1244269] FGEI neurcn: 2, maxVal: [ 16.44824461]

10
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Figure 4.3: The maximally activated neuron from each particular layer of baseline cat
model share somewhat consistent values.

The last two images of figure 4.3 were a by-product created to detect trends
in intermediate activations. However, no useful conclusions can be made from these

visualisations.
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4.1.5 ’Reverse Engineering’ Results

The ’reverse-engineering’ test was used to reveal qualitative metrics from activation
trends. This test revealed a breakthrough for the thesis by revealing the existence of
"deactivated neurons’, summarised below in figure 4.4. Neurons 4, 7, 12, 14 and 19 all
"flat-line’ during the activation for all three inputs (the full set of graphs showing all
deactivated neurons is found in Appendix 2). This indicates that regardless of input,
these particular neurons are ’deactivated’. This hypothesis was confirmed for the entire

dataset, revealing they were deactivated for all input.

E
Figure 4.4: 'Reverse engineering’ tests for three varied inputs showcasing the difference

between a deactivated neuron and an activated neuron. Full set of graphs found in
Appendix 2.

4.1.6 Potential Metrics Gleaned From Tests

Neural Network Utilization

Combining the results from the hyper-parameter sweeps for accuracy and the break-
through of deactivated neurons in 'reverse engineering’, the first potential qualitative
metric was identified. Neural Network Utilization (NINU) is defined as the percent-
age of deactivated neurons within the network. A percentage is vital as the total number
of neurons varies from model to model. Below in figure 4.5, the NNU against accuracy

reveals potential results, as trends differ between baseline cat, dog and TL models.
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NNU vs. Accuracy of baseline cat using variable number of neurons in second hidden layer
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Figure 4.5: Comparing baseline cat, baseline dog and TL cat to dog models for NNU vs.
accuracy using sweep test on the second hidden layer. Full set of sweep visualisations
can be found in Appendix 2.

However, while there is variance in NNU across the models which indicates
potential value as a new metric, the results of this test are inconclusive, most likely
due to the small-scale nature of this investigation phase. Hence, this potential metric’s

significance will be fully extrapolated in the exploration phase.
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Activation Spectrum and Range

The results of maximum activation and the reveal of deactivated neurons imply that
additional qualitative metrics can be gleaned from analysing the activations across the

entirety of models.

Hence, two additional qualitative metrics are proposed. Firstly, Activation
Spectrum, which will analyse the spectrum of activations of neurons across the entire
network. This was explored, but results are irrelevant due to the inconclusive nature of
such a small number of neurons and small datasets. The full implication of this metric

is revealed in the exploration phase.

Secondly, Activation Range, which reveals the maximum activation range of
individual layers. Early tests in this phase from 4.1.4 revealed that successful models had
a consistency of maximum activation in each layer. This implication will be solidified in

the exploration phase.
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4.2 Exploration Phase Results

4.2.1 Accuracy Results

Firstly, the accuracy across the test set of each model is required to use the potential

metrics to qualitatively assess performance.

Model Accuracy
1 - basic cnn 0.759
2 - img aug cnn 0.835
3 - transfer cnn 0.891
4 - tl img aug cnn 0.896
5 - tl img aug ft cnn 0.949

Table 4.2: Accuracy across test set for macro-models.

The pre-condition of each macro-model improving upon the accuracy of each
predecessor is fulfilled. Following this pre-condition, the qualitative metrics can now

attempt to provide insight into these values.

Model Accuracy
5 - tl img aug ft cnn 0.949
Ha - tl img aug ft cnn alter neurons 0.944
5b - tl img aug ft cnn add layer 0.956
5¢ - tl img aug ft cnn alter Ir 0.933

Table 4.3: Accuracy across test set for micro-models.

These values indicate that making micro-structural changes to models does not
affect performance as significantly as the macro-structural changes. However, the quali-
tative metrics will still be investigated to potentially provide insight into these high-level

values as well.
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4.2.2 Neural Network Utilization (NNU) Results

Macro-models results

NNU Comparison
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Figure 4.6: NNU results for macro-models 1 to 5.
Model | Deactivated Neurons | Total Activations NNU Accuracy
1 366 1697000 0.02157% 0.759
2 316 1697000 0.01862% 0.835
3 58 1025000 0.00566% 0.891
4 172 9217000 0.00187% 0.896
5 35 9217000 0.00038% 0.949

Table 4.4: Accuracy across test set for macro-models.
NNU is the most promising of the three qualitative assessment metrics, ev-
ident from the substantial trend in figure 4.6 and table 4.4. As shown in the graph,
NNU decreases as accuracy increases (accuracy depicted by colour-mapping), showing an

inversely proportional relationship between NNU and accuracy.

The major implications, inferring from the macro-structural differences, is that
applications can improve their performance by reassessing regularization techniques, such
as L2 or dropout, as well as employ data augmentation techniques such as image augmen-

tation. These techniques decrease NNU and thus increase performance (i.e. accuracy).
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In addition, like all DL applications, data quality and quantity will be a bot-

tleneck for performance. This is indicative by the results of TL models outperforming

the other models as the TL models exploit the VGG-16 model which is trained on the

extremely substantial ImageNet dataset. Therefore, increasing data quality and quantity

affects the overall NNU which affects performance.

Micro-model results
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Figure 4.7: NNU results for micro-models.
Model | Deactivated Neurons | Total Activations NNU Accuracy
5 35 9217000 0.00038% 0.949
5a 27 9193000 0.00029% 0.944
5b 70 9729000 0.00072% 0.956
5¢ 4106 9217000 0.04455% 0.933

Table 4.5: Accuracy across test set for micro-models.

From figure 4.7a and table 4.5, micro-models provide less conclusive results as the macro-

models. Particularly as the altered learning rate is a substantial outlier. Various attempts

were run for the altered learning rate model and all presented the same outlier behaviour.

The other three models (5, 5a, 5b) shown in figure 4.7b confirm the results from the

macro-models, as their high-accuracy is reflected by low NNU, with each micro-model

having smaller NNU than the other macro-models.
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However, when comparing these three models, NNU seems to be proportional
to accuracy not inversely proportional. The difference of NNU of these models is rel-
atively small when compared to the macro-models, however, it does imply that while
minimising NNU can be indicative of performance, it is not the only contributing fac-
tor. Hence, macro-structural differences of models substantially affect NNU which affects
performance, whereas micro-structural differences do not provide a strong correlation

between NNU and performance.

An additional implication of minimising NNU by deleting deactivated neurons

is explored in another test in section 2.

4.2.3 Activation Spectrum (AS) Results

Macro-models results
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Figure 4.8: Activation spectra for macro-models.
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The second qualitative assessment metric, Activation Spectrum, provides a visuali-
sation of the entire network’s maximum activations per neuron. As postulated in the
investigation evaluation, depicting the spectrum of activation provides some qualitative
understanding of why different systems perform better than others. The spectra use

different colours to delineate activations in different layers.

Comparing models 1 and 2 to models 3, 4 and 5 in figure 4.8, it is evident
that introducing TL begins to shift activations to have a right-skewed distribution. This
implies right-skewed distributions of maximum activations of each neuron correspond to
better-performing systems. In addition, re-emphasising the results of NNU, minimising

NNU in producing better performing systems is visually evident in the spectrum.

This qualitative metric could similarly be used to illustrate improvements to a
system. To improve AS, minimising NNU, re-evaluating the activation function and initial
weight distribution could all be strategies to develop right-skewed distributions while
limiting deactivated neurons. Furthermore, using L.2 regularization, which penalising the
square values of weights, will drive weights to be smaller and hence should promote more

right-skewed spectra (see 2.2.2 for more on 1.2).
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Micro-models results
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Figure 4.9: Activation spectra for micro-models

Since all of these micro-models share similar performances, it is unsurprising that all
contain right-skewed distributions with minimal NNU (excluding figure 4.9d which is an

outlier). This further emphasises the need to develop right-skewed spectra when seeking

to improve systems.
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4.2.4 Activation Range (AR) Results

Macro-models results
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Figure 4.10: Activation range results for macro-models.

The final qualitative assessment metric developed, Activation Range, measures the
maximum activation within each individual layer of a model. This metric provides ad-
ditional insight into the nature of activation values affecting performance, as the best
performing model - model 5, coloured purple in figure 4.10 - has the largest activation
of any of the macro-models. However, from other experiments, such as that depicted in
figure 4.11 with a retrained model 1, larger magnitudes of AR do not necessarily imply
better performance, as model 1 in this experiment still had an accuracy of 75.6%.

Activation Range Comparison

1200 BN basic_cnn

I img_aug_cnn
B transfer_cnn
1000 Bl tl_img_aug_cnn
B tl_img_aug_ft_cnn

800

600

Activation

400

200

el |

0 Models' Layer Activations

Figure 4.11: Another iteration of macro-model activation range results showing
inconsistencies in magnitude.

However, from figure 4.10 and 4.11, it is clear that consistency in each layer’s

activation within a model reflects better performance, as shown in models 3, 4 and 5.
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Micro-models results
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Figure 4.12: Activation range results for micro-models.

Consistency in each layer’s activations implying better performance is also highlighted by
the micro-models results in figure 4.12, as all of the high-performing models all maintain
consistency of each layer’s maximum activation. Hence, the implications of using AR
to improve a model’s performance are to seek consistencies of layer activations. This
can be accomplished by applying similar strategies to improving the NNU and AS, by
employing regularization within the network (particularly considering L2 to drive weights

to be smaller) as well as reassessing activation function choices.

4.2.5 Unsuccessful Tests

Several other tests for qualitative metrics were explored, however, were ultimately unsuc-

cessful for various reasons. These are dictated and explored below.

Maximally Activating Features

Using Keras, it is possible to analyse the intermediate activations within a network, as
mentioned previously in the NNU test section of chapter two. This is particularly useful
when exploring image classification, as specific features of images are more reactive for
specific neurons (or feature maps for convolutional layers). By plotting these activations
as images, the results reveal the more reactive features of each neuron, as specific sections

of these images are significantly brighter than others, as seen in figure 4.13.
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Figure 4.13: Visualisation created in an attempt to expose specific features which
triggered significant activation within networks.

This visualisation was created to potentially reveal a metric of exposing and
isolating the specific features which trigger significant activations. However, nothing

conclusive amounted from this exploration.



Most prevalent pixel inversions

Stemming from the work of Samek et al. [30], an attempt was made to measure which
particular pixels of an input image triggered the highest activation, using the intermediate
activations of the previous unsuccessful test. Upon finding these pixels, a test would have
been created to randomize the colours of those pixels and see how the network reacted
to the altered input. This, in turn, could have extended to a potential metric similar to

Maximally Activating Features, however, remained inconclusive.

Deactivation Deletion Results

The final unsuccessful test stemmed from the implications found in exploring NNU, as
it was identified that minimising NNU produced superior results. With this implication,
an intuitive step could be to delete these particular neurons from the network and see
if performance increased, decreased, or remained the same. After various tests on the
various models available, deleting the deactivated neurons had little to no impact on
performance, as accuracy remained stagnant. Therefore, this test did not produce any
additional metrics but did solidify that removing deactivated neurons has no impact on

improving performance.
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Chapter 5

Conclusion

5.1 Summary Of Solution

The search for qualitative assessment metrics was successful as three metrics were iden-
tified and explored for developing additional insight into the performance of transfer

learning applications.

In the investigation phase, hyperparameter sweep tests were developed to anal-
yse and compare trends across the high-level confusion matrix metrics. In addition, while
analysing the networks at the activation level using the 'reverse-engineering’ tests, a piv-
otal result was discovered in the identification of deactivated neurons; neurons with no
activation across entire datasets. Combining the sweep tests and this pivotal result, Neu-
ral Network Utilization (NNU), Activation Spectrum (AS), and Activation Range (AR)

were all identified as potential metrics to explore.

NNU assesses the percentage of deactivated neurons to total neurons across an
entire network. AS visualises the maximum activation distribution of each individual
neuron across the entire network. AR visualises the range of each layer of the network,
plotting the maximum activation per layer. The full extent of these metrics could not be

achieved using the smaller-scale experiment, as results were promising but inconclusive.
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In the exploration phase, a larger scale experiment was developed, such that
the qualitative insights and implications of the identified metrics from the investigation
phase could be recognised and examined. Utilising the powerful high-level, robust, DL
Python library, Keras, a series of models were developed. Five models with macro-
structural differences were created, each increasing with complexity than the previous
model. The increase in complexity was intended to provide an increase in performance.
Taking the best model from the macro-models, another three models were created with

micro-structural changes between each model.

Using both the macro-models and micro-models, the three metrics were ex-
plored. Keras has powerful modelling capabilities, granting the ability to explore all in-
termediate activations within the network. These intermediate activations formed the ba-
sis of identifying deactivated neurons, extracting maximum activation values, and hence,
developing the three metrics. Using these results, visualisations of all three metrics were

developed to qualitatively assess the performance of transfer learning.
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5.2 Implications Of Qualitative Metrics

Neural Network Utilization (NNU)

Each of the three qualitative metrics can provide additional insight into understanding

the performance of a deep learning system; and by extension, a transfer learning system.

The results from the NNU tests were the most insightful in providing a quali-
tative perspective to TL systems. It was found that across the macro-models, NNU was
inversely proportional to accuracy (see figure 5.1a), implying that a reason for superior
performing systems is the minimal percentage of deactivated neurons in the network. It
also gives credence to how to improve NNU, and therefore improve the system’s per-
formance, as seen by the macro-structural changes being contingent factors to reducing
NNU; macro-structural changes being regularization techniques, data augmentation tech-
niques, and improving data quantity and quality. The analysis of micro-models (see figure
5.1b) revealed that minor-structural changes within well-performing systems affect NNU

much less significantly compared to macro-structural changes.
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(a) NNU results for macro-models 1 to 5. (b) NNU results for micro-models 5, 5a,
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Figure 5.1: NNU results of all models.
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Activation Spectrum (AS)

The results from AS tests revealed that the distribution of activation across an entire net-

work can also be used to qualitatively assess the performance of applications. Particularly

when comparing the macro-models, a high amount of deactivated neurons (which is the

first green spike in figure 5.2a) and an otherwise uniform distribution produced poorer

results, whereas having a reduced amount of deactivated neurons and a right-skewed dis-

tribution (seen in figures 5.2b and 5.2¢) produced superior results. The implication of this

test reveals other potential methods of improving systems such as reassessing activation

functions, initial weight distributions, and utilizing regularization techniques such as L2

to drive weights to be smaller.
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Figure 5.2: Activation Spectra for models 1, 5 and 5b.
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Activation Range (AR)

Finally, AR tests revealed additional qualitative understanding by analysing the maxi-
mum activations of each layer rather than individual neurons. These tests revealed that
superior performing models maintained more consistent ranges per layer in comparison
to poorer performing models, which produced more erratic distributions. This is evident
when comparing the earlier, poorer performing macro-models in figure 5.3a to the later
macro-models in the same figure and micro-models in figure 5.3b. Similarly, this metric
could be improved by assessing activation functions, weight distributions and regulariza-

tion techniques.

Activation Range Comparison
Activation Range Comparison

Models' Layer Activations

Models' Layer Activations

(b) AR micro-models excluding

(a) AR macro-models. outlier.

Figure 5.3: Activation range results for micro-models.

5.3 Future Work

The premise of the thesis was to develop potential metrics to qualitatively assess the
performance of TL systems, which was intended to be a foundation into unpacking the
"black-box’ nature of deep learning. Therefore, future work would entail taking these
metrics and exploring the ’black-box’ further. A starting point could be developing
additional relationships between the qualitative metrics and other high-level metrics from

the confusion matrix.

In addition, several other concepts were developed to identify additional qual-
itative metrics, such as exposing the specific features of data that triggered significant

activation (seen in figure 5.4), which was discussed in section 4.2.5.
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Figure 5.4: Visualisation created in an attempt to expose specific features which
triggered significant activation within networks.

Another area that was not explored was analysing how weights changed before
and after the transfer of knowledge occurred, which could also develop additional quali-
tative metrics. Most of the qualitative metrics from the thesis were gleaned from analysis
at the activation level, and analysing the weights themselves would be the next layer of

abstraction.
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For neuron: 0, maxVal- [ 3.92647812]
[

0 B a0 &0
For neuron: 4, maxVal- [ 0.00960403]
[ -

&0
For neuron: 12, maxVal: [ 16 87645907]
0

0 2 0 0
For neuron: 1, maxVval: [ 13.84466486]
0

Maximum Activation Test

For neuron: 1, maxVal: [ 4.71026475]
0 _

0
For neuron: 13. maxval: [ 15 7630091}]

For neuron; 17 maxval 1971534779]

For neuron; 1 mxx\la\ 8 7595a395]

For neuron; 5 mxx\la\ 17 29003951]

Fnr neuron; z maxVaI [15 aaazaasl]

Appendix 2 - Investigation Phase

For neuron: 2, maxVal: [ 3 31425633]
o

60

0 20 EY &
For neuron: 6, maxVal: [ 4.49131654]
o

For neuron: 14, maxVal: [ 19 38633511
o

0

&
For neuron: 18, maxVal: [ 4.69177024]
o =

20 ]
For neuron: 6, maxVval: [ 6.20962497]

0 20 0 0
For neuron: 3, maxval: [ 2.15726119]
0

activation.

For neuron: 3, maxVal: [ 5.36256295]
[

E] &
4.6099262]

1] 0
For neuron: 3, maxva\ [8 79760366]
]

1]
For neuron: 0, maxva\ [12 7123951]

Figure 5: Input image for each individual neuron that produced the maximum



’Reverse Engineering’ Test
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'Reverse engineering’ test results. Neurons 4, 7, 12, 14 and 19 are deactivated.
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Full sweep test results for baseline cat, dog and TL cat to dog

Accuracy of baseline cat using variable number of neurons in first hidden layer Accuracy of baseline dog using variable number of neurons in first hidden layer
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Figure 7: Comparing baseline cat, baseline dog and TL cat to dog models for accuracy
using all four sweep tests.
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NNEUVS- Accuracy of baseline cat using variable number of neurons in first hidden layer NNl{a}s Accuracy of baseline dog using variable number of neurons in first hidden layer
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Figure 8: Comparing baseline cat, baseline dog and TL cat to dog models for accuracy
using all four sweep tests.
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Appendix 3 - Python Code For Exploration Phase

Detailed Model Structures

Macro-Models Model Summaries

Model 1 Code

# Model 1 — Basic CNN

model = Sequential()

model.add(Conv2D(16, kernel_size=(3, 3), activation="relu’,
input_ shape=input_ shape))
model.add(MaxPooling2D(pool__size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation="relu’))
model.add(MaxPooling2D(pool__size=(2, 2)))

model.add(Conv2D(128, kernel _size=(3, 3), activation="relu’))
model.add(MaxPooling2D(pool__size=(2, 2)))

model.add(Flatten())
model.add(Dense(512, activation="relu’))

model.add(Dense(1, activation=’'sigmoid’))

model.compile(loss=’binary_ crossentropy’,
optimizer="rmsprop’,

metrics=["accuracy’])

model.summary ()

Model 1 Summary

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 148, 148, 16) 448

max__pooling2d_ 1 (MaxPooling2 (None, 74, 74, 16) 0

conv2d_ 2 (Conv2D) (None, 72, 72, 64) 9280

max__pooling2d_ 2 (MaxPooling2 (None, 36, 36, 64) 0

conv2d_ 3 (Conv2D) (None, 34, 34, 128) 73856

max_ pooling2d_ 3 (MaxPooling2 (None, 17, 17, 128) 0

flatten_1 (Flatten) (None, 36992) 0
dense__1 (Dense) (None, 512) 18940416
dense__2 (Dense) (None, 1) 513

Total params: 19,024,513
Trainable params: 19,024,513

Non—trainable params: 0
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Model 2 Code

# Model 2 — CNN with regularization and image augmentation

# Develop augmented image data to add additional data from existing ddata
train__datagen = ImageDataGenerator(rescale=1./255, zoom_ range=0.3, rotation_range=50,
width__shift__range=0.2, height_ shift_ range=0.2, shear_range=0.2,

horizontal flip=True, fill _mode='nearest’)

val__datagen = ImageDataGenerator(rescale=1./255)

img_id =1

cat__generator = train_ datagen.flow(train_imgs[img id:img_id+1], train_labels[img_id:img id+1],
batch__size=1)

cat = [next(cat__generator) for i in range(0,5)]

fig, ax = plt.subplots (1,5, figsize =(16, 6))

print (*Labels:”, [item [1][0] for item in cat])

1 = [ax[i].imshow(cat[i |[0][0]) for i in range(0,5)]

# Load data generators
train_ generator = train_ datagen.flow(train_imgs, train_labels_enc, batch_size=30)
val__generator = val_datagen.flow(validation__imgs, validation_labels_enc, batch_size=20)

input_ shape = (150, 150, 3)

# Define structure

model = Sequential()

model.add(Conv2D(16, kernel__size=(3, 3), activation="relu’,
input_ shape=input_ shape))
model.add(MaxPooling2D(pool__size=(2, 2)))

model.add(Conv2D(64, kernel _size=(3, 3), activation='relu’))
model.add(MaxPooling2D(pool__size=(2, 2)))

model.add(Conv2D (128, kernel_size=(3, 3), activation="relu’))
model.add(MaxPooling2D(pool__size=(2, 2)))

model.add(Conv2D (128, kernel_size=(3, 3), activation="relu’))
model.add(MaxPooling2D(pool _size=(2, 2)))

model.add(Flatten())
model.add(Dense(512, activation=’relu’))
model.add(Dropout(0.3))
model.add(Dense(512, activation="relu’))
model.add(Dropout(0.3))

model.add(Dense(1, activation="sigmoid’))
model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=1e—4),

metrics=["accuracy’])

model.summary()
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Model 2 Summary

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 148, 148, 16) 448

max__pooling2d_ 1 (MaxPooling2 (None, 74, 74, 16) 0

conv2d_2 (Conv2D) (None, 72, 72, 64) 9280

max_ pooling2d_ 2 (MaxPooling2 (None, 36, 36, 64) 0

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

max_ pooling2d__ 3 (MaxPooling2 (None, 17, 17, 128) 0

conv2d_4 (Conv2D) (None, 15, 15, 128) 147584
max__pooling2d_ 4 (MaxPooling2 (None, 7, 7, 128) 0
flatten_ 1 (Flatten) (None, 6272) 0
dense__1 (Dense) (None, 512) 3211776
dropout__1 (Dropout) (None, 512) 0
dense_ 2 (Dense) (None, 512) 262656
dropout__2 (Dropout) (None, 512) 0
dense_ 3 (Dense) (None, 1) 513

Total params: 3,706,113
Trainable params: 3,706,113

Non—trainable params: 0

VGG-16 Model Summary

Layer Type Layer Name Layer Trainable

© 0w N O U R W N = O

19 <keras.layers.core.Flatten object at 0x0000017A6133EB70> flatten_ 2 False

<keras.engine.input__layer.InputLayer object at 0x0000017A55CD9D30> input__1 False
<keras.layers.convolutional. Conv2D object at 0x0000017A6133EBA8> blockl_convl False
<keras.layers.convolutional. Conv2D object at 0x0000017A6133E668> blockl__conv2 False
<keras.layers.pooling. MaxPooling2D object at 0x0000017AF0CA3128> blockl_pool False
<keras.layers.convolutional. Conv2D object at 0x0000017AB01FC390> block2_convl False
<keras.layers.convolutional. Conv2D object at 0x0000017AFODABOF0> block2_conv2 False
<keras.layers.pooling. MaxPooling2D object at 0x0000017AFODAB9B0> block2_pool False
<keras.layers.convolutional. Conv2D object at 0x0000017AFO0DAB940> block3_ convl False
<keras.layers.convolutional. Conv2D object at 0x0000017AFO0DF5278> block3__conv2 False
<keras.layers.convolutional. Conv2D object at 0x0000017AFODF5F98> block3_ conv3 False
10 <keras.layers.pooling. MaxPooling2D object at 0x0000017AFO0E29F98> block3_ pool False
11 <keras.layers.convolutional.Conv2D object at 0x0000017AFOE29EF0> block4 convl False
12 <keras.layers.convolutional.Conv2D object at 0x0000017AFOE5F2E8> block4 conv2 False
13 <keras.layers.convolutional. Conv2D object at 0x0000017AFOE77BA8> block4 conv3 False
14 <keras.layers.pooling.MaxPooling2D object at 0x0000017TAFOE8S8E9E8> block4_pool False
15 <keras.layers.convolutional.Conv2D object at 0x0000017AFOE8E8DO0> block5_convl False
16 <keras.layers.convolutional.Conv2D object at 0x0000017AFOEC3710> block5__conv2 False
17 <keras.layers.convolutional.Conv2D object at 0x0000017AFOEDF518> block5_ conv3 False
18 <keras.layers.pooling. MaxPooling2D object at 0x0000017AFOEF89B0> block5_ pool False
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Model 3 Code

# Model 3 — CNN with pre—trained feature extractor

input_shape = vgg_model.output_shape[1]

model = Sequential()

model.add (InputLayer(input__shape=(input_shape,)))
model.add(Dense(512, activation=’relu’, input_ dim=input__shape))
model.add(Dropout(0.3))

model.add(Dense(512, activation="relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation="sigmoid’))
model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=1e—5),

metrics=["accuracy’])

model.summary ()

Model 3 Summary

Layer (type) Output Shape Param #
dense__1 (Dense) (None, 512) 4194816
dropout__1 (Dropout) (None, 512) 0
dense_ 2 (Dense) (None, 512) 262656
dropout__ 2 (Dropout) (None, 512) 0
dense__3 (Dense) (None, 1) 513

Total params: 4,457,985
Trainable params: 4,457,985

Non—trainable params: 0
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Model 4 Code

# Model 4 — CNN with pre—trained feature extractor (with image augmentation)

# Augment image data

train__datagen = ImageDataGenerator(rescale=1./255, zoom_ range=0.3, rotation_range=50,
width__shift_range=0.2, height_ shift_ range=0.2, shear_range=0.2,

horizontal_flip =True, fill_mode=’nearest’)

val__datagen = ImageDataGenerator(rescale=1./255)

train_ generator = train_ datagen.flow(train_imgs, train_labels_enc, batch_ size=30)

val _generator = val_datagen.flow(validation_imgs, validation_labels_enc, batch_ size=20)

model = Sequential()

model.add(vgg__model)

model.add(Dense(512, activation="relu’, input_dim=input_shape))
model.add(Dropout(0.3))

model.add(Dense(512, activation="relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation=’'sigmoid’))
model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=2e—5),

metrics=["accuracy’])

model.summary()

Model 4 Summary

Layer (type) Output Shape Param #
model__1 (Model) (None, 8192) 14714688
dense__7 (Dense) (None, 512) 4194816
dropout_5 (Dropout) (None, 512) 0
dense__8 (Dense) (None, 512) 262656
dropout__6 (Dropout) (None, 512) 0
dense_ 9 (Dense) (None, 1) 513

Total params: 19,172,673
Trainable params: 4,457,985
Non—trainable params: 14,714,688
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Model 5 Code

# Model 5 — CNN with pre—trained feature extractor (with image augmentation and fine—tuning)

vgg_model.trainable = True

set__trainable = False
for layer in vgg model.layers:
if layer.name in [’block5 convl’, 'block4 convl’]:
set__trainable = True

if set__trainable:

layer . trainable = True
else :
layer . trainable = False
layers = [(layer, layer.name, layer.trainable) for layer in vgg model.layers|

pd.DataFrame(layers, columns=["Layer Type’, 'Layer Name’, ’Layer Trainable’])

train__datagen = ImageDataGenerator(rescale=1./255, zoom_ range=0.3, rotation_range=50,
width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,
horizontal flip=True, fill_mode=’nearest’)

val__datagen = ImageDataGenerator(rescale=1./255)

train__generator = train_ datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val__generator = val__datagen.flow(validation__imgs, validation_ labels__enc, batch__size=20)

model = Sequential()

model.add(vgg__model)

model.add(Dense(512, activation="relu’, input_ dim=input_ shape))
model.add(Dropout(0.3))

model.add(Dense(512, activation="relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation="sigmoid’))
model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=1e—5),

metrics=["accuracy’])

Model 5 Summary

Layer (type) Output Shape Param #
model__1 (Model) (None, 8192) 14714688
dense__10 (Dense) (None, 512) 4194816
dropout__7 (Dropout) (None, 512) 0
dense__11 (Dense) (None, 512) 262656
dropout__8 (Dropout) (None, 512) 0
dense_ 12 (Dense) (None, 1) 513

Total params: 19,172,673
Trainable params: 17,437,185
Non—trainable params: 1,735,488
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Micro-Models Model Summaries

Model 5a Code

# Model 5a — CNN with pre—trained feature extractor (with fine—tuning) —> altered neurons in dense layers

vgg model.trainable = True

set__trainable = False

for layer in vgg_model.layers:

if layer.name in [’block5 convl’, 'block4 convl’]:

set__trainable = True

if set__trainable:

layer . trainable = True
else :
layer . trainable = False
layers = [(layer, layer.name, layer.trainable) for layer in vgg model.layers]

pd.DataFrame(layers, columns=["Layer Type’, 'Layer Name’, ’Layer Trainable’])

train__datagen = ImageDataGenerator(rescale=1./255, zoom_ range=0.3, rotation_range=50,

val__datagen = ImageDataGenerator(rescale=1./255)

train__generator = train_ datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val__generator = val__datagen.flow(validation__imgs, validation__labels__enc, batch__size=20)

model = Sequential()

model.add(vgg__model)

width__shift _range=0.2, height_ shift range=0.2, shear_range=0.2,

horizontal flip=True, fill _mode=’nearest’)

model.add(Dense(600, activation=’relu’, input_ dim=input_ shape))
model.add(Dropout(0.3))
model.add(Dense(400, activation="relu’))
model.add (Dropout(0.3))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_ crossentropy’,

optimizer=optimizers. RMSprop(lr=1e—5),

metrics=["accuracy’])

model.summary()

Model 5a Summary

Layer (type) Output Shape Param #

model 1 (Model)  (Neme,s192)  uuess
dense_ 4 (Dense) (None, 600) 4915800

dropout__3 (Dropout) (None, 600) 0

dense_5 (Dense) (None, 400) 240400

dropout_4 (Dropout) (None, 400) 0

dense__6 (Dense) (None, 1) 401

Total params: 19,871,289

Trainable params: 18,135,801

Non—trainable params: 1,735,488
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Model 5b Code

# Model 5b — CNN with pre—trained feature extractor (with fine—tuning) => additional layer

vgg_model.trainable = True

set__trainable = False
for layer in vgg model.layers:
if layer.name in [’block5 convl’, 'block4 convl’]:
set__trainable = True

if set__trainable:

layer . trainable = True
else :
layer . trainable = False
layers = [(layer, layer.name, layer.trainable) for layer in vgg model.layers|

pd.DataFrame(layers, columns=["Layer Type’, 'Layer Name’, ’Layer Trainable’])

train__datagen = ImageDataGenerator(rescale=1./255, zoom_ range=0.3, rotation_range=50,
width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,
horizontal flip=True, fill_mode=’nearest’)

val__datagen = ImageDataGenerator(rescale=1./255)

train__generator = train_ datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val__generator = val__datagen.flow(validation__imgs, validation_ labels__enc, batch__size=20)

model = Sequential()

model.add(vgg__model)

model.add(Dense(512, activation="relu’, input_ dim=input_ shape))
model.add(Dropout(0.3))

model.add(Dense(512, activation="relu’))

model.add(Dropout(0.3))

model.add(Dense(512, activation="relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation="sigmoid’))

model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=1e—5),
metrics=["accuracy’])

model.summary()

Model 5b Summary

Layer (type) Output Shape Param #

model 1 (Model)  (Nome, 8192 aaruaess
dense_ 7 (Dense) (None, 512) 4194816

dropout__5 (Dropout) (None, 512) 0

dense__8 (Dense) (None, 512) 262656

dropout__6 (Dropout) (None, 512) 0

dense_9 (Dense) (None, 512) 262656

dropout__7 (Dropout) (None, 512) 0

dense_ 10 (Dense) (None, 1) 513

Total params: 19,435,329
Trainable params: 17,699,841
Non—trainable params: 1,735,488
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Model 5¢ Code

# Model 5¢ — CNN with pre—trained feature extractor (with fine—tuning) => changed LR

vgg_model.trainable = True

set__trainable = False
for layer in vgg model.layers:
if layer.name in [’block5 convl’, 'block4 convl’]:
set__trainable = True

if set__trainable:

layer . trainable = True
else :
layer . trainable = False
layers = [(layer, layer.name, layer.trainable) for layer in vgg model.layers|

pd.DataFrame(layers, columns=["Layer Type’, 'Layer Name’, ’Layer Trainable’])

train__datagen = ImageDataGenerator(rescale=1./255, zoom_ range=0.3, rotation_range=50,
width__shift_range=0.2, height_shift_range=0.2, shear_range=0.2,
horizontal flip=True, fill_mode=’nearest’)

val__datagen = ImageDataGenerator(rescale=1./255)

train__generator = train_ datagen.flow(train_imgs, train_labels_enc, batch_size=30)

val__generator = val__datagen.flow(validation__imgs, validation_ labels__enc, batch__size=20)

model = Sequential()

model.add(vgg__model)

model.add(Dense(512, activation="relu’, input_ dim=input_ shape))
model.add(Dropout(0.3))

model.add(Dense(512, activation="relu’))

model.add(Dropout(0.3))

model.add(Dense(1, activation="sigmoid’))
model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=2e—5),

metrics=["accuracy’])

Model 5¢ Summary

Layer (type) Output Shape Param #
model__1 (Model) (None, 8192) 14714688
dense__10 (Dense) (None, 512) 4194816
dropout__7 (Dropout) (None, 512) 0
dense__11 (Dense) (None, 512) 262656
dropout__8 (Dropout) (None, 512) 0
dense_ 12 (Dense) (None, 1) 513

Total params: 19,172,673
Trainable params: 17,437,185
Non—trainable params: 1,735,488
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Exploration Metric Tests

Imports

##!/usr/bin/env python
# coding: utf—8

# Final Large Scale TL Experiment For Thesis C #
# Author: Joel Smith z5076397

After completing several small scale investigations into TL for image classification , building a DNN from scratch using numpy, a

larger scale investigation will act as the final experiment for the thesis project.

This larger scale investigation is based off

https://towardsdatascience.com/a—comprehensive—hands—on—guide—to—transfer—learning—with—real—world —applications—in

—deep—learning—212bf3b2f27a where the famous 'Dog vs. Cat’ dataset will be used. The dataset contains 25,000 images of dogs and cats
to be applied on the pretrained VGG —16 model trained on the ImageNet database.

# Import methods created by author

import tl__metric__lib as tml

# # Basic imports
import glob

import numpy as np
import os

import math

import re

# # Visualisations

import matplotlib.pyplot as plt

from keras.preprocessing.image import ImageDataGenerator, load__img, img_to_array, array_to_img
from IPython.display import display

from PIL import Image

# # Pre—trained models

from keras.applications import vggl6
from keras.models import Model
import keras

import pandas as pd

# CNN methods
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, InputLayer, Lambda
from keras.models import Sequential

from keras import optimizers

# # Evaluating models

from keras.models import load__model
import model__evaluation__utils as meu
from sklearn import metrics

import keras.backend as K
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Global definitions

## Load all models and parameters ##
input_ shape = (150, 150, 3)
IMG__DIM = (150, 150)

# load saved models

basic_cnn = load__model(’cats dogs basic_cnn.h5’)

img aug_cnn = load__model(’cats__dogs_cnn_img aug.h5’)

tl_cnn = load__model(’cats__dogs tlearn_ basic_cnn.h5")
tl_img aug cnn = load_model(’cats dogs tlearn img aug cnn.h5’)

tl_img_ aug finetune_cnn = load__model(’cats__dogs_ tlearn_finetune_img_aug_cnn.h5’)

# load other configurations

IMG_DIM = (150, 150)

input_ shape = (150, 150, 3)

num?2class_label_transformer = lambda 1: ['cat’ if x == 0 else 'dog’ for x in 1]

class2num__ label transformer = lambda 1: [0 if x == ’cat’ else 1 for x in 1]

# Use a pre—trained model as a feature extractor and fine tune
vgg = vggl6.VGG16(include_top=False, weights=’imagenet’,
input_ shape=input_shape)

output = vgg.layers[—1].output
output = keras.layers.Flatten() (output)
vgg_model = Model(vgg.input, output)

vgg_model.trainable = False
for layer in vgg model.layers:

layer . trainable = False

pd.set_option('max_ colwidth’, —1)
layers = [(layer, layer.name, layer.trainable) for layer in vgg model.layers]

pd.DataFrame(layers, columns=['Layer Type’, 'Layer Name’, ’Layer Trainable’])

# Load and prepare dataset

test_ files = glob.glob(’test_data/x’)

test_imgs = [img_to_ array(load__img(img, target_size=IMG__DIM)) for img in test_ files]
test__imgs = np.array(test_ imgs)

print ( test_ files [0])

test_labels = [fn. split (*\\’) [1]. split (*.") [0]. strip () for fn in test_files ]

test_imgs_scaled = test_imgs.astype(’float32)
test_imgs_scaled /= 255

test_labels__enc = class2num__label transformer(test_labels)
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NNU Methods

Metric Methods

def NNU__comparison(models, model _names=[], accuracy_ results=[]):

wnn

Calculates NNU for all provided models

Arguments:

models —— list of pre—trained keras models

model _names —— list of strings of identifying names for models

accuracy_ results —— list of floats of high—level accuracy of models

Returns:

NNU_ results —— NNU metric of all models in form [(deactivated_neurons, total neurons), ...]

wnn

test_bottleneck features = tml.get_bottleneck_features(vgg model, test_imgs_scaled)

results = ]
for i, preloaded_model in enumerate(models):

print ("Testing model {}".format(i))
# Get output at each layer
indexes = tml.layer_index_for_ activations(preloaded__model)

model = tml.create_ activations_ model(preloaded__model, indexes)

# get activations

layer__activations = tml.compute_ activations(model,i, vgg model, test_imgs_scaled)
# Analyse per neuron if activation is ’deactivated’
deactivated, total activations = tml.analyse for deactivation(layer activations)

input_size = layer__activations [0].shape[0]

# Neuron is deactivated if the neuron is zeroed for all provided input. Therefore should equal len(input) in dict

NNU_results = tml.find__true_ deactivation_ results(deactivated, total activations, input__size, results)

if not (model_names):

model_names = [str(i) for i in range(len(models))]

if not (model_names):

model_names = ["unknown" for i in range(len(models))]

print_ NNU_ results(NNU__results, model names, accuracy_ results)

return NNU__results
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AS Methods

def activation_spectrum(models, model _names=[]):

Visualises AS and stores graphs for all provided models

Arguments:

models —— list of pre—trained keras models

model _names —— list of strings of identifying names for models
win

results = [|

if not (model names):

model_names = [str(i) for i in range(len(models))]

for i, preloaded_model in enumerate(models):
print ("Testing model {} ...".format(i))
# Get output at each layer
layer__indexes = tml.layer__index_ for_activations(preloaded__model)

model = tml.create_ activations_ model(preloaded__model,layer__indexes)

# get activations

layer_activations = tml.compute_activations(model,i,vgg model, test_imgs scaled)

input_size = layer_ activations [0].shape[0]

# find maxActivations

max__activations = tml.analyse_for_activation_range(layer activations)

# Plot spectrums

tml.plot__activation_spectrum(layer_ activations, max__activations, separate=False, name=model namesl[i])

Deactivation Deletion Methods

def deactivation deletion(model):

wn

Given a model, identify the deactivated neurons, ’delete’ them from the network and

retrain model

Arguments:

model —— pretrained keras model

Return:

deac__model —— trained model with deactivated neurons removed

preloaded__model = model
# Get output at each layer
layer__indexes = tml.layer_index_ for_ activations(preloaded__model)

model = tml.create_ activations_ model(preloaded__model,layer__indexes)

# get activations

layer activations = tml.compute_activations(model,0,vgg model, test_imgs_scaled)
input_size = layer_ activations [0].shape[0]

# Analyse per neuron if activation is ’deactivated’

deactivated, total activations = tml.analyse_for_deactivation(layer activations)

# Neuron is deactivated if the neuron is zeroed for all provided input. Therefore should equal len(input) in dict
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deac__results = tml.find_ true_ deactivation_ results(deactivated, input_ size)

# create masks from NNU comparison

maskl_val = np.ones((1,model.layers[1].output_shape[—1]))
mask2_val = np.ones((1,model.layers[2].output_shape[—1]))
mask3__val = np.ones((1,model.layers[3].output_shape[—1]))

masks = [maskl_val, mask2_ val, mask3_ val]

for r in deac_ results:
_, layer, neuron =r

masks[layer ][0][ neuron] = 0

maskl = K.variable(masks[0])
mask2 = K.variable(masks[1])
mask3 = K.variable(masks[2])

# retrain model after ’deleting’ neurons from training

deac__model = tml.train_best__model_with_deleted__deactivations(vgg_model, maskl, mask2, mask3)

# identify increase/decrease in performance

return deac_ model

# Deactivation Deletion Results
def deactivation__deletion__analysis(deac__model, source_model):
Given two trained models — a source model and the source model retrained with deactivated neurons removed —

analyse and compare high—level results

Arguments:
deac__model —— pretrained keras model of source__model with deactivated neurons removed
source__model —— pretrained keras model

wn

predictions = deac_model.predict__classes(test__imgs_ scaled, verbose=0)
predictions = num?2class_label transformer(predictions)
meu.display__model__performance__metrics(true_labels=test__labels, predicted_labels=predictions,

classes =list (set (test_labels)))

predictions = source__model.predict__classes(test__imgs scaled, verbose=0)
predictions = num?2class_ label transformer(predictions)
meu.display__model__performance__metrics(true_labels=test__labels, predicted_ labels=predictions,

classes =list (set (test__labels)))

# Deac model
meu.plot__model_roc_ curve(deac_model, test_imgs_scaled,
true__labels=test__labels__enc,

class_ names=[0, 1])

# previously best model (original) — transfer learning with fine —tuning & image augmentation
meu.plot__model_roc_ curve(source_model, test_imgs_scaled,
true__labels=test__labels__enc,

class_ names=[0, 1])
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AR Methods

def activation_range(models, model_names=[]):

W

Visualises AR for all provided models

Arguments:

models —— list of pre—trained keras models
model__names —— list of strings of identifying names for models
results = [|

test__bottleneck features = tml.get_ bottleneck_features(vgg_ model, test__imgs_scaled[0:99])
for i, preloaded__model in enumerate(models):

print ("Testing model {}".format(i))
# Get output at each layer
layer__indexes = tml.layer index_for_activations(preloaded model)

model = tml.create_activations_ model(preloaded__model,layer__indexes)

# get activations

layer__activations = tml.compute_ activations(model,i,vgg_model, test_imgs_ scaled)

input_size = layer_ activations [0].shape[0]

# Find maximum activation

model _max_activation = tml.analyse for activation_range(layer activations)
results .append(model__max_ activation)
# print results

print_ AR_ results(models, model names, results, accuracy_ results)

return results
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Exploration Metrics Method Library

def get_bottleneck features(model, input_imgs):

W

Extract bottle neck features of VGG —16 to feed into target CNN

Arguments:
model —— vgg—16 model
input__imgs —— input dataset
Returns:
features —— Bottle neck features
features = model.predict(input_ imgs, verbose=0)

return features

== == === == Activation Analysis Methods ============ ===

def layer_index_ for_ activations(model):

Obtain the layer indexes that output activations to be used to create activations model

This will only be dense, convolution, model (vgg—16 layer) or maxpool layers.

Arguments:
model —— keras model
Returns:
indexes —— indexes of layers with activations

wnn

indexes = []
for i, layer in enumerate(model.layers):
if (re.match(".*dense|.*conv|.xmodel|.*pool", layer.name)):
indexes.append(i)

return indexes

def create_activations_model(model,indexes):

Creates the ’activations model’, which is a keras model with outputs at every layer

that has activations, allowing visualisation of intermediate activations

Arguments:

model —— keras model

indexes —— indexes of layers with activations
Returns:

A keras Model object with outputs defined at given indexes

W

outputs = [model.layers[i]. get_output_at(—1) for i in indexes]

return Model(inputs=model.inputs, outputs=outputs)

def compute_activations(model, i, vgg_model, test_imgs_scaled):

wn

Computes the activations of the activation model

Arguments:
model —— keras model
i —— iteration of models being analysed (useful as Model (3) requires the input to

bottle —neck features)

vgg_ model —— pretrained VGG —16 model
test__imgs_ scaled —— test—set scaled to be same size
Returns:
activations —— model.predict returns a list of numpy arrays for each set of activations

across all images of test—set per layer

if (i == 2): # tl_cnn takes test__bottleneck_ features
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2

test__bottleneck features = get_ bottleneck features(vgg model, test_imgs scaled)
return model.predict(test__bottleneck_ features)
else:

return model.predict(test__imgs scaled)

analyse_ for__deactivation(layer__activations):
Wi

Analyses the given layer —activations for neurons that are emitting O for all test—images (i.e. deactivated)
Neurons are added as a ’suspect’ if for any input they emit 0 activation. True deactivation will occur if

neurons are found to have 0 for ALL inputs.

Arguments:
layer__activations —— a list of numpy arrays for each set of activations

across all images of test —set per layer

Returns:
deactivated —— A dictionary of all ’suspect’ deactivated neurons
total activations —— the total number of neurons (or activations) in the network

deactivated = {}
total__activations = 0
for layer_num, activations in enumerate(layer_activations):
for i, a in enumerate(activations):
if (a.ndim > 1):
for ¢ in range(a.shape[—1]):
if (np.count_nonzero(a[:,:,c]) == 0):
deactivated [("cnn",layer_num,c)] = deactivated.get(("cnn",layer _num,c),0) + 1
else:
for x in np.where(a == 0)[0]:

deactivated[( "dnn",layer__num,x)] = deactivated.get(("dnn",layer_num,x),0) + 1

# Calculate total activations for this model
if (activations [0]. ndim > 1):

total__activations += np.product(activations.shape[—1])
else:

total__activations += activations.shape[1]

return deactivated, total activations

def find_ true_ deactivation_ results(deactivated, total_activations, input_size, NNU_ results):
Takes the ’suspected’ deactivated neurons from analyse_for_deactivation and detects which are
actually deactivated for the entire input size.
Arguments:
deactivated —— A dictionary of all ’suspect’ deactivated neurons
total activations —— the total number of neurons (or activations) in the network
input__size —— size of input dataset
NNU_ results —— list tracking all of the NNU results of all provided models
Returns:
NNU__results —— The NNU results for the given model in form [(deactivated neurons, total neurons), ...
completely__deact = []
for (k,v) in deactivated.items():
if (v == input_ size):
completely__deact.append (k)
NNU__results.append((len(completely_deact), total activations))
return NNU__results
He=—==——=—=——=—=———=——=——=—===============x= AS Methods ===================================

def plot_activation_spectrum(layer activations, max_activations, name="model"):
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W

Plots the activation spectrum for the given layer —activations of a certain keras model

Arguments:
layer__activations —— a list of numpy arrays for each set of activations
across all images of test —set per layer
max__activations —— the maximum activations of each given layer

name —— name of model

wnn

# Define figure
plt. figure ( figsize =(10,10))
all_act = []

all__colors = []

# Generate color map for differentiating layers

new__cmap = rand__cmap(len(layer activations), type="bright’, first_ color_black=False, last_ color_ black=False, verbose=True)

# Simplify data from complex numpy array activation to a flattened activation array for histogram plotting
for layer_num, activations in enumerate(layer_activations):
print ("Calculating layer {} activation spectrum ...".format(layer_ num))
bins = np.arange(0, math.ceil(maxActivations(layer_num]), math.ceil(maxActivations[layer_ num])/10)
a = np.amax(activations, axis=0)
if (a.ndim > 1):
a_flat = np.amax(a, axis=—1)
color = [list (np.random.random(size=3))] * len(a__flat)
else:
a_flat = a
bins = np.arange(0, math.ceil(maxActivations[layer_num]), math.ceil(maxActivations[layer_num])/100)

color = list (new__cmap(layer__num))

# Plot layer on frequency histogram
__ = plt.hist (a_flat, bins=bins, color=color, label='Layer {} ’.format(layer_num))
plt. title ("{} — Activation Spectrum".format(name))
plt . xlabel ("Activations")
plt.ylabel ("Frequency")
plt.legend()

# Save plot
plt . savefig (" results /{} —AS—{}.png".format(name, datetime.datetime.now().strftime("%Y %m%d—%H%M%S")))

train__best__model_with_ deleted__deactivations(vgg_model,maskl, mask2, mask3):

Method for deactivation deletion test. This model takes model (5) and retrains

given certain masks to ’delete’ deactivated neurons

Arguments:
vgg_ model —— VGG—16 model
maskl —— Mask for removing hidden layer 1 of deactivated neurons
mask2 —— Mask for removing hidden layer 2 of deactivated neurons
mask3 —— Mask for removing hidden layer 3 of deactivated neurons
Returns:
model —— retrained model 5 with deactivated neurons ’deleted’

vgg_model.trainable = True

set__trainable = False
for layer in vgg model.layers:
if layer.name in [’block5_convl’, 'block4 convl’]:
set__trainable = True

if set__trainable:
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layer . trainable = True
else:

layer . trainable = False

layers = [(layer, layer.name, layer.trainable) for layer in vgg model.layers]

pd.DataFrame(layers, columns=["Layer Type’, 'Layer Name’, 'Layer Trainable’])

train__datagen = ImageDataGenerator(rescale=1./255, zoom__range=0.3, rotation_range=50,
width__shift__range=0.2, height__shift_range=0.2, shear_range=0.2,
horizontal flip=True, fill mode=’nearest’)

val__datagen = ImageDataGenerator(rescale=1./255)

# Load datasets
IMG_DIM = (150, 150)

train_ files = glob.glob(’training_data/x’)
train_imgs = [img to_array(load_img(img, target_ size=IMG__DIM)) for img in train_ files]
train__imgs = np.array(train_ imgs)

train_labels = [fn.split (*\\’) [1]. split (*.") [0]. strip () for fn in train_ files]

validation_ files = glob.glob(’validation_data/x")
validation_imgs = [img_to_ array(load img(img, target size=IMG__DIM)) for img in validation_ files]
validation_ imgs = np.array(validation_imgs)

validation_labels = [fn. split (*\\") [1]. split (*.") [0]. strip () for fn in validation_ files ]

# Scale pixel values from 0—255 to 0—1 for optimizing learning
train_imgs scaled = train_imgs.astype(’float32’)
validation__imgs_ scaled = validation_imgs.astype('float32”)
train_imgs_scaled /= 255

validation__imgs_scaled /= 255

print (train_ imgs[0].shape)
array_to_img(train_imgs[200])

# One—hot encode data and configure parameters
batch__size = 30

num__classes = 2

epochs = 30

input_ shape = (150, 150, 3)

# encode text category labels

from sklearn.preprocessing import LabelEncoder

# Encode labels

le = LabelEncoder()

le. fit (train_ labels)

train_ labels__enc = le.transform(train_labels)

validation_labels__enc = le.transform(validation_labels)

# Data generators
train_ generator = train_ datagen.flow(train_ imgs, train_labels_enc, batch_size=30)

val__generator = val_datagen.flow(validation_imgs, validation_ labels__enc, batch__size=20)

# Define model

model = Sequential()

model.add(vgg_model)

model.add(Lambda(lambda x: x * mask1))

model.add(Dense(512, activation='"relu’, input_ dim=input_ shape))
model.add(Lambda(lambda x: x * mask2))
model.add(Dropout(0.3))

model.add(Dense(512, activation=’relu’))
model.add(Lambda(lambda x: x * mask3))
model.add(Dropout(0.3))
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model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_ crossentropy’,
optimizer=optimizers. RMSprop(lr=1e—5),

metrics=["accuracy’])

history = model.fit_generator(train_ generator, steps_per_epoch=100, epochs=100,

validation__data=val__generator, validation__steps=50,
verbose=1)

return model

def analyse_for_activation_range(layer__activations):

win
Analyses each layer’s activations to determine the maximum activation per layer

and hence determine activation range

Arguments:
layer_activations —— a list of numpy arrays for each set of activations
across all images of test —set per layer
Returns:
max__activations —— the maximum activations of each given layer

max__activation = []
for layer_ num, activations in enumerate(layer_activations):
currLayerMax = 0
for i, a in enumerate(activations):
tempMax = np.amax(a)
if (currLayerMax < tempMax):
currLayerMax = tempMax
max__activation.append(currLayerMax)

return max_ activation

def rand__cmap(nlabels, type=’bright’, first__color__black=True, last_ color__black=False, verbose=True):
Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks
Found at: http://stackoverflow.com/questions/14720331/how—to—generate—random—colors—in—matplotlib
:param nlabels: Number of labels (size of colormap)
:param type: ’bright’ for strong colors, ’soft’ for pastel colors
:param first__color__black: Option to use first color as black, True or False
:param last__color__black: Option to use last color as black, True or False
:param verbose: Prints the number of labels and shows the colormap. True or False
:return: colormap for matplotlib
from matplotlib.colors import LinearSegmentedColormap
import colorsys

import numpy as np

if type not in (’bright’, ’soft’):
print (’Please choose "bright" or "soft" for type’)

return

if verbose:

print (’Number of labels: * + str(nlabels))

# Generate color map for bright colors, based on hsv
if type == ’bright”:
randHSVcolors = [(np.random.uniform(low=0.0, high=1),
np.random.uniform(low=0.2, high=1),

np.random.uniform(low=0.9, high=1)) for i in range(nlabels)]
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# Convert HSV list to RGB
randRGBcolors = []
for HSVcolor in randHSVcolors:
randRGBcolors.append(colorsys.hsv__to_ rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))

if first_ color__black:
randRGBcolors[0] = [0, 0, 0]

if last__color_ black:

randRGBcolors[—1] = [0, 0, 0]
random__colormap = LinearSegmentedColormap.from_ list('new__map’, randRGBcolors, N=nlabels)

# Generate soft pastel colors, by limiting the RGB spectrum

if type == ’soft’:
low = 0.6
high = 0.95

randRGBcolors = [(np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high),

np.random.uniform(low=low, high=high)) for i in range(nlabels)]

if first_ color__black:
randRGBcolors[0] = [0, 0, 0]

if last__color_ black:

randRGBcolors[—1] = [0, 0, 0]

random__colormap = LinearSegmentedColormap.from_ list(’new map’, randRGBcolors, N=nlabels)

return random__colormap
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