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Abstract Background e mess—
« The ‘black-box’ nature of transfer learning makes it difficult to assess the performance of Deep Learning (_DL) | SO -?,;- ________ —H festres
applications beyond a few standard, high-level metrics (i.e. accuracy). * Machine learning (ML) using neural network 5 =
frameworks with many hidden layers, % = } e .
« This limits the ability to improve the system without a more qualitative, finer-grade producing algorithms to model high level | con | | =
perspective. abstractions T e

Figure 1: Transfer learning using a pre-trained

* There is a need to develop qualitative assessment metrics to understand the performance of
feature extractor

transfer learning applications. Transfer Learning (TL) N Basic CNN performance )
* ML technique that takes what is learned in one ., = ys | — Tointoss
- This would provide further insight into potential errors within the application and areas of setting and exploits to improve generalization ...
Improvement, beyond what is perceivable by higher-level metrics. in another. S 0 315
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Typical performance metrics 6/ I ——— | ——————————
Aims ¢ MOSt performance metriCS are high'level Fpoch Receiver Operating Characteristic (ROC) Curve Fpoch
« Most common: Accuracy. (f

« To identify qualitative metrics that can be used to successfully evaluate the performance of
transfer learning applications at a finer-grade level than accuracy.
 To show how these metrics can be used to develop insight into improving the application

« Common: ROC and loss curves
« Sometimes: F1-score, precision and
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and explain higher-level metrics, such as accuracy. O e
Figure 2: Accuracy, loss, and ROC curve examples
Experlmental Setup RQSUltS NNU Comparison -
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Dataset Three major metrics were found via analysing at activation level 0.0175 rITIITIl-I:!;;r;a-s-e;-i 0.8
« Binary image classification is explored using a subset of 0.0150 | as accuracy :
the famous Dogs vs. Cat dataset, 1. Neural Network Utilization (NNU) 00195 : increases I >
* Training: 3000, validation: 1000, testing: 1000 = e o e e e e ' :
C e g . = 0.0100 o
* A non-insignificant number of deactivated neurons, 9, = 0.4
Pre-trained feature Extractor existed for all models. 0.0075
* VGG-16 model is a state-of-the-art 16-layer CNN and FC - i.e. for all 1000 test images, specific neurons (or feature 0.0050 0.2
network trained on ImageNet database, built for large- maps for CNN layers) produced zero. 0.0025
scale image classification (see figure 3).  NNU can be deduced as the percentage of deactivated 0.0000 - — _ L — 0.0
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VGG-16 Model Architecture neurons within a network, indicating total network utilization: o e e “\mg/auq/c \-mg/a\lg/ﬁ/
e - B
\ - \ Models ’
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ﬂ | e | total number of activations inversely proportional relationship of NNU to accuracy
A A e iy e 2. Activation Spectrum (AS)
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S il G el e R - Plotting activations as a spectrum across entire model provide « Spectrums revealed right-skewed distributions with minimal
convi L eom2l com32  onwd?  ccomb2 size=1000 qualitative insight. (see figure 6) deactivated neurons produced the superior results.
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Figure 6: Models 1-5 (left to right) AS showing right-skewed distribution with minimal deactivated neurons indicates highest
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Figure 4: Model (3), (4), (5) architecture using VGG-16 as a * Figure 7 shows max activation for each 2 i better
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High-level results * More consistent max-activation across layers
seem to suggest better performance. 10
Model (1) (2) (3) (4) (5)
5.
Accuracy 76.3 85.4 89.2 89.6 94.9
— 0 ] ] ] Models' La.yer Activations ]
Accuracy increases across models Figure 7: Activation Range comparison of the 5 different models.
Table 1: Accuracy (%) of each model against 1000 test images. Each bar is the maximum-activation of each internal layer.
Conclusions Future Research
NNU, Activation Spectrum and Activation Range are three metrics that qualitatively assess TL * Proposed metrics (particularly NNU) could qualitatively assess the
applications performance of TL in any domain, such as audio, NLP or computer
. 1 . .
 From figure 5, NNU « vision.
Accuracy

 Decreasing NNU from DL application to the TL application is vital.

* Improve NNU: Reassess regularization techniques (i.e. dropout) and employ data
augmentation

* From figure 6, right-skewed distributions while minimising NNU = successful TL

« Improve AS: minimise NNU, re-evaluate activation function and weight distribution.

* From figure 7, consistency from max activations per layer may be indicative of
performance.

* Improve AR: similar to AS improvement

« A starting point for unpacking ‘black-box’ nature of TL.

« A potential area to investigate other metrics is exposing specific
features which trigger significant activation within networks (see
figure 8).

Figure 8: Visualizing intermediate
activations within CNN

 Investigation of degrees of weight shift within TL applications
would also provide potential metrics



