

Thesis 2019

Australia's Global University

Faculty of Engineering

School of Electrical Engineering and Telecommunications

Qualitative Assessment Metrics For Transfer Learning

Author: Joel Smith

Supervisor: Dr. Beena Ahmed

Abstract

- The 'black-box' nature of transfer learning makes it difficult to assess the performance of applications beyond a few standard, high-level metrics (i.e. accuracy).
- This limits the ability to improve the system without a more qualitative, finer-grade perspective.
- There is a need to develop qualitative assessment metrics to understand the performance of transfer learning applications.
- This would provide further insight into potential errors within the application and areas of improvement, beyond what is perceivable by higher-level metrics.

Aims

- To identify qualitative metrics that can be used to successfully evaluate the performance of transfer learning applications at a finer-grade level than accuracy.
- To show how these metrics can be used to develop insight into improving the application and explain higher-level metrics, such as accuracy.

Background

Deep Learning (DL)

 Machine learning (ML) using neural network frameworks with many hidden layers, producing algorithms to model high level abstractions

Transfer Learning (TL)

 ML technique that takes what is learned in one setting and exploits to improve generalization in another.

Typical performance metrics

- Most performance metrics are high-level
- Most common: Accuracy.
- Common: ROC and loss curves
- Sometimes: F1-score, precision and prevalence

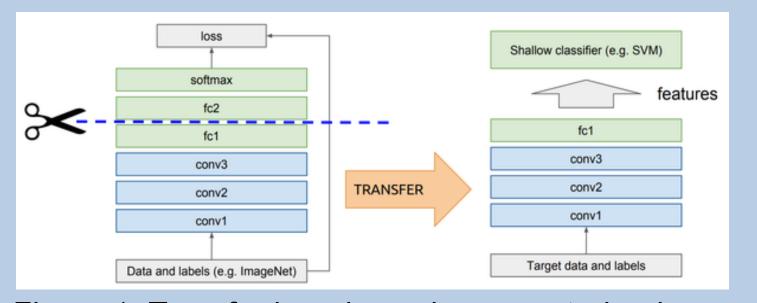


Figure 1: Transfer learning using a pre-trained

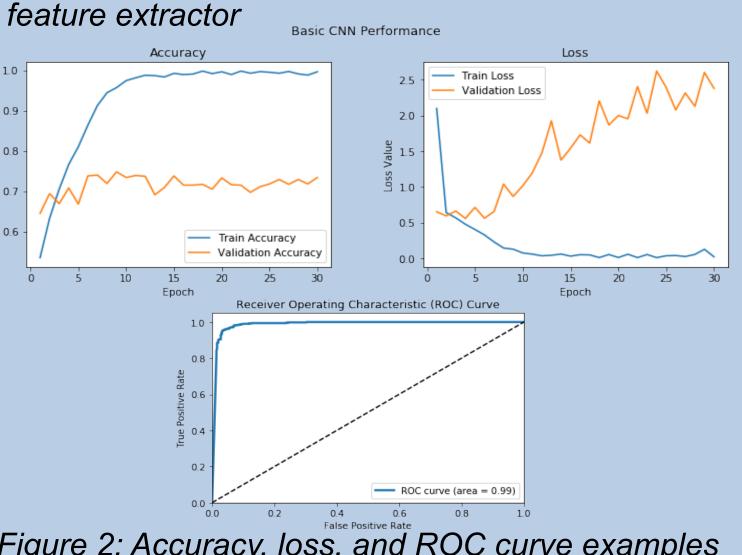


Figure 2: Accuracy, loss, and ROC curve examples

Experimental Setup

Dataset

- Binary image classification is explored using a subset of the famous Dogs vs. Cat dataset,
- Training: 3000, validation: 1000, testing: 1000

Pre-trained feature Extractor

 VGG-16 model is a state-of-the-art 16-layer CNN and FC network trained on ImageNet database, built for largescale image classification (see figure 3).

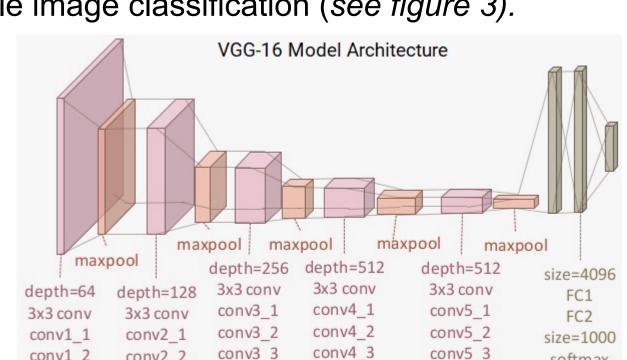


Figure 3: VGG-16 Model Architecture

Models

Five models were created using a Keras framework:

- Simple CNN with regularization
- 2. CNN with regularization and image augmentation
- TL using a pre-trained feature extractor with frozen layers
- 4. (3) with image augmentation
- 5. (4) but use fine-tuning instead of freezing layers

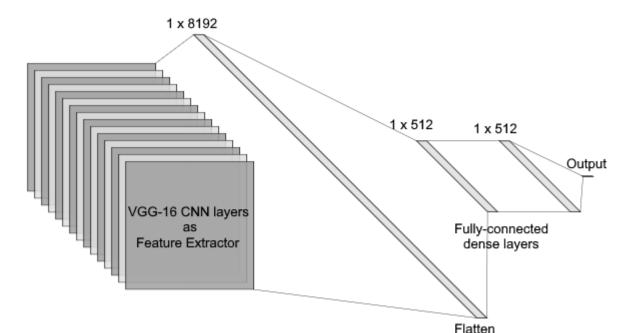


Figure 4: Model (3), (4), (5) architecture using VGG-16 as a feature extractor

High-level results

Model	(1)	(2)	(3)	(4)	(5)
Accuracy	76.3	85.4	89.2	89.6	94.9

Accuracy increases across models

Table 1: Accuracy (%) of each model against 1000 test images.

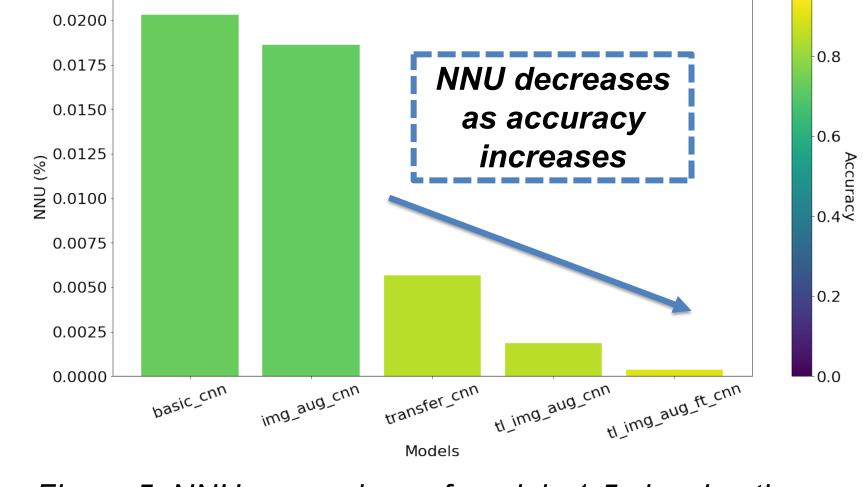
Results

Three major metrics were found via analysing at activation level

- 1. Neural Network Utilization (NNU)
- A non-insignificant number of **deactivated neurons**, ϑ , existed for all models.
- i.e. for all 1000 test images, specific neurons (or feature maps for CNN layers) produced zero.
- NNU can be deduced as the percentage of deactivated neurons within a network, indicating total network utilization:

$$NNU\left(\%\right) = \frac{\vartheta}{total\ number\ of\ activations}$$

- 2. Activation Spectrum (AS)
- Plotting activations as a spectrum across entire model provide qualitative insight. (see figure 6)



NNU Comparison

Figure 5: NNU comparison of models 1-5 showing the inversely proportional relationship of NNU to accuracy

Spectrums revealed right-skewed distributions with minimal deactivated neurons produced the superior results.

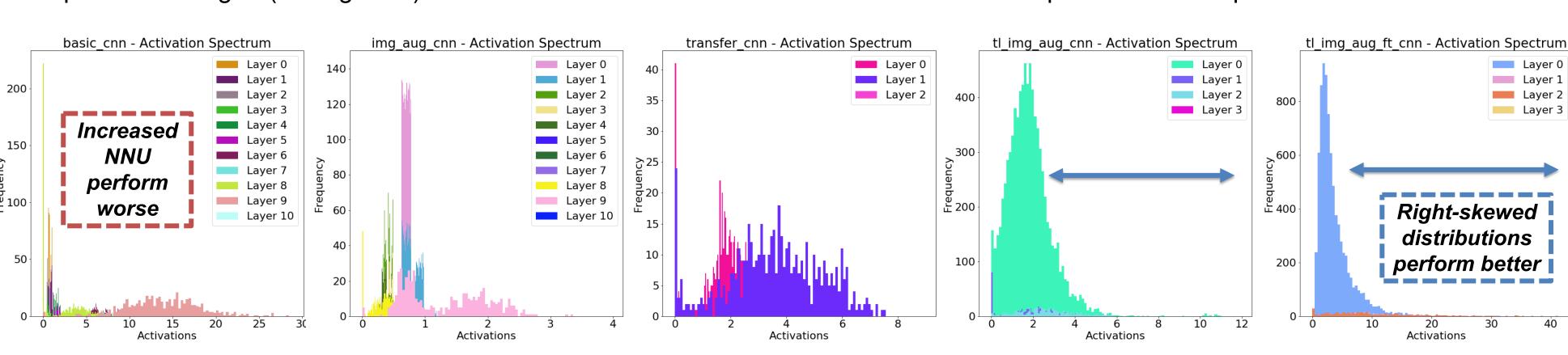
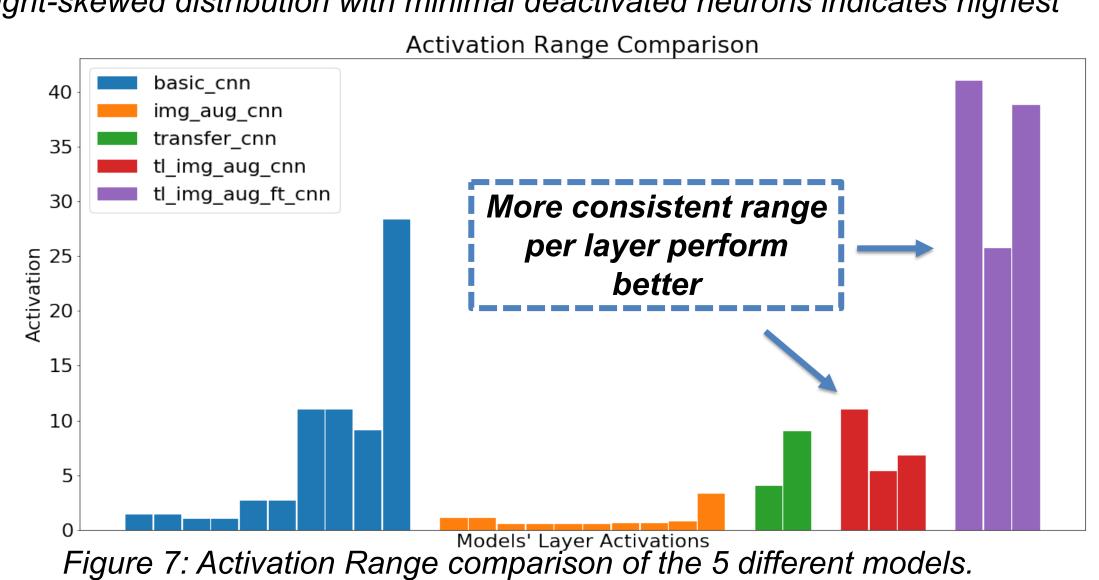


Figure 6: Models 1-5 (left to right) AS showing right-skewed distribution with minimal deactivated neurons indicates highest performance. **Activation Range Comparison**

- 3. Activation Range (AR)
- Figure 7 shows max activation for each individual layer within a model.
- More consistent max-activation across layers seem to suggest better performance.



Each bar is the maximum-activation of each internal layer.

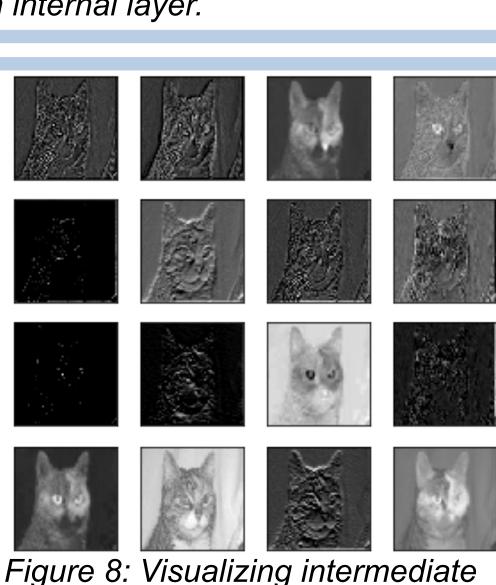
Conclusions

NNU, Activation Spectrum and Activation Range are three metrics that qualitatively assess TL applications

- From figure 5, $NNU \propto \frac{1}{Accuracy}$
- **Decreasing NNU** from DL application to the TL application is vital.
- Improve NNU: Reassess regularization techniques (i.e. dropout) and employ data augmentation
- From figure 6, right-skewed distributions while minimising NNU ⇒ successful TL
- Improve AS: minimise NNU, re-evaluate activation function and weight distribution.
- From figure 7, consistency from max activations per layer may be indicative of performance.
- Improve AR: similar to AS improvement

Future Research

- Proposed metrics (particularly NNU) could qualitatively assess the performance of TL in any domain, such as audio, NLP or computer vision.
- A starting point for unpacking 'black-box' nature of TL.
- A potential area to investigate other metrics is exposing specific features which trigger significant activation within networks (see figure 8).
- Investigation of degrees of weight shift within TL applications would also provide potential metrics



activations within CNN